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ABSTRACT

This report describes a research investigation directed toward more
efficient utilization of channel capacity for speech communication. This
objective was pursued by a program (1) to theoretically analyze the benefits
realized by "predictive encoding" of vocoded speech sources, (2) to propose
and analytically design a model of a typical processing system utilizing
predictive coding, and (3) to evaluate the performance characteristics of
such a system by simulation with vocoded speech samples on a digital computer.

The results were significant in that a compression of 35 to 40 percent
was obtained relative to the initial requirements for transmission of the
spectrum portion of vocoded speech data. This magnitude of compression can
be obtained for essentially real-time transmission and buffer storage require-
ments of the order of 100 bits.

Compression factors greater than one-half are possible if a time delay
in the speech transmission can be tolerated and if additional memory can
be supplied.
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FOREWORD

I The basic philosophy behind the research reported in this document
grew out of an in-house program at Texas Instruments in imagery enhance-
ment and bandwidth compression over the two year period 1958 to 1959.
Beginning in 1960, these results were applied to the general problem of

speech bandwidth compression with the intent to implement some of the
advanced coding concepts of modern information theory into the speech
bandwidth compression problem. Early in 1961 our preliminary results
were discussed with the Air Force Cambridge Laboratories leading to the
study contract for which this document is Part II of the final report.

Actual work on the contract began early in 196Z and continued until

June of 1963. The initial study efforts were performed by Mr. A. R. Aitken
who txtended the predictive encoding concept beyond what was originally
proposed. Mr. R. L. Brueck joined the program and took over the research

efforts after Mr. Aitken left Texas Instruments to attend the University of
Texas. Mr. Brueck was able to achieve some rather elegant solutions to

what turned out to be formidable mathematical and statistical problems.
Without the availability of some advanced computational algorithms, which
he designed, it would have been difficult indeed to have completed the pro-
gram as successfully as has been the case. The writing of the final report
was almost entirely his activity.
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EFFICIENT UTILIZATION OF CHANNEL CAPACITY
FOR

SPEECH COMMUNICATION

by

R. L. Brueck
A. R. Aitken

D. R. Ziemer

SECTION I

INTRODUCTION

Stated most simply, this research report describes an investigation
directed toward more efficient utilization of channel capacity for speech

communication. This objective was pursued by a program (1) to theoretically
analyze benefits that might be realized by "predictive coding" of vocoded
speech sources, (2) to propose and analytically design a model of a typical
processing system utilizing predictive coding, and (3) to evaluate the
performance characteristics of such a system by simulation with vocoded

speech samples on a digital computer.

In an attempt to provide an interested reader with sufficient (but
minimal) motivation and background, a brief discussion of fundamental
concepts from information and statistical prediction theory is included as
an introduction. These elementary remarks in no way constitute the whole
of the theory upon which this research is based. The first three references*

more than adequately provide the interested reader with the rigour and insight
of the abstract theory. The sole interest here is to provide argument for "why"

and "how" to pursue the insight of that theory, and to augment it where
necessary. In particular, to proceed one must understand the necessity and
manner of assigning measures to any coding system and clarify parameter
trade-offs that are involved in processing a message from a source through
a communication channel to a remote sink.

This study is strictly preliminary in extent. Expenditures of effort such
as: the organizing, formulating, and sorting out of the relevant theory; the
development of systematic and efficient means to accumulate and handle
necessary source data; the investigation and solution of problems of accurate

mathematical computation; the preparation of computer programs that are
necessary to gather design and evaluation measures; and the unproductive
results of chasing false or immaterial problems; are all pre-requisite to a
more exhaustive program of investigation. As is to be expected, the return on

*See Section VI,. References.
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these efforts, as measured by insight and detailed conclusions, is weighted
heavily toward the continuation of research. However significant the insight

and conclusions of this work, more questions and new ideas have been
generated than have been analyzed in conclusive detail. The concepts.
investigative approach, and analytical methods employed in this program will
be generalized and improved in future efforts. Even more certainly, additional
research will augment, clarify, and possibly correct conclusions reached at
this time. For these reasons, it is important to evaluate the extent to which
the theoretical and analytical tools used actually predicted and "measured"
(in the sense of reliable estimates) the outcome of experimental results. It
is significant to establish this program, and those to follow, as formulated
on a sound and useful analytical basis, and not solely on naked intuition or
pure art of experience.

A. SOURCE PROCESSING CONSIDERATIONS.

The purpose of any communications channel is to transmit messages as
generated by some source to some physically remote sink. It is intuitively
clear that in some temporarily undefined sense, various information sources
produce message "bulk" at different rates. For instance, total message bulk
produced by a manually operated telegraph key in one second is much less
than that being produced by a television camera in one second. Similarly, it
is also clear that various communication channels are of different sizes in the
sense that each may convey only some maximum mnessage bulk per unit time,
and in general, the larger a channel is the more expensive it is to build and
operate. Finally, it is clear that the greater the rate of production of a given
source the greater must be the size and cost of the channel provided to
communicate its messages. However, for one or more of several possible
reasons, it is not always necessary to transmit the entire message bulk through
the channel. Therefore, an economical benefit can be realized if, prior to
transmission, the input message is subjected to some transformation which
reduces or compresses its bulk to that of the essential part and thus reduces
the required size of the communication channel. Transformations of this sort
are defined to be source processing operations.

Most frequently, when one talks of compression of a signal (the physical
representation of a message), one means or at least implies, reducing its
bandwidth. Implicitly then, bandwidth is employed as a measure of source and
channel sizes. While bandwidth is certainly a very meaningful parameter of
sources and channels, equating source size and required channel size on this
basis alone turns out to be quite meaningless; ingenious modulation schemes
exist whereby the channel bandwidth required to transmit messages from a
source of given bandwidth can be made as large or as small as one likes by
adjusting other system parameters

Information theory, as introduced principally by C. E. ShannonI, provides
alternate measures of source rate and channel size. Specifically, it is necessary I
to assign measure to: (1) the bulk or volume of a message by its information
content; (2) the bulk rate (average rate of bulk production) of a source by its
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entropy, H, which is its average rate of information production; and (3) the
bulk rate of a noiseless channel by its capacity, C, which is the maximum
average rate at which it can convey information from source to sink. The
basic significance of these measures is primarily in the fact that there
exists a very meaningful relationship between the entropy of any source and
the (minimum) channel capacity required to communicate its messages.
Specifically, any channel is large enough to satisfactorily communicate
messages from an arbitrary source of entropy, H, if it has a capacityC--H.
However, if the channel is to be as small as possible (i. e., if the equality
C = H is to hold, or nearly so), the input messages must be transformed in
a certain way prior to transmission. These transformations are the essence
of efficiently utilizing channel capacity, and together with related transforma-

tions at the receiving end, are called source processing. In contrast, if
optimum processing is not done, the channel must have some capacity greater
than the source entropy.

Clearly then, a source processing transformation may be considered a
compression operation, at least in the sense that required channel capacity is
being minimized. However, if it happens that the specified channel has greater
bandwidth than the specified source, then an optimum processing transformation
may actually "expand" the input signal bandwidth. In such an instance, channel
efficiency is maximized by adjusting other system parameters (such as trans-
mitter power) which also figure in the measure of capacity. One can avoid
this difficulty in pinpointing the meaning and description of efficiency, by
describing a new reference for processing operations.

To resolve the apparent difference is purpose between channel coding in
the usual context, and bandwidth compression operations on a source, one makes
a clarification of our reference to channel and a distrinction in types of coding.

The over all coding transformation, (and also the decoding transformation
at the receiving end), can be conveniently separated into two operations in

series. These are called source processing and channel coding, respectively.
Figure 1 illustrates this discussion. The principal feature is characterized
by a definition of a "standard" or reference channel. The objective of source

coding is to match the source to this standard channel input (considered as a
"standard source"), to the actual channel. For present purposes, the impor-
tance of the standard channel lies in that it is defined so as to be minimum
bandwidth channel in the same sense one ordinarily uses in discussing bandwidth
compression. As a result, optimum source processing implies maximum
compression of both bandwidth and capacity, and the distinction in objective

is unnecessary. The significant measure of the standard channel is the
information rate, it being understood that a trade -off exists through channel coding
between this rate and the power utilized in the actual channel. Also, the error
rate or fidelity of the actual channel is for the most part a separate concern
from the fidelity of source processing operations directed toward reducing the
information rate input to the standard channel.

3
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13828

Figure 1. Speech Communication System- Simplified Block Diagram

The standard channel is assumed to be errorless. Thus, fidelity is to

be interpreted in the sense that any operation on the source signal at the trans-
mitter must be accomplished with a level of faithfulness of source reproduction
at the receiver. Increased efficiency resulting from optimally matching source
information rates to the standard channel is only meaningful if measured subject

to some fidelity criterion for the process. This fidelity consideration is a good i
basis for distinguishing between the two types of source processing operations.

Once this distinction is clear, the discussion can be confined to measures
within the scope of the investigation being reported.

The source processing operations may now be distinguished by simply
partitioning all possible compression transformations into two categories:

those that are non-singular or strictiy reversible, and those that are singular
or irreversible. (A strictly reversible transformation of a signal is one that
can be completely undone by a second transformation so as to yield a net result

identical to the original signal. ) I
In a strict sense, the speech source is represented by a continuous analog

signal, that cannot be described with finite sample data information. For trans-
mission through discrete channels, the messages must be reduced to a discrete
representation of finite length. Any operation of this type is irreversible in the

strict sense. However, the measure, H, of source information rate is defined

in a manner to recognize this situation. It is defined so as to explicitly depend
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on a fidelity rmeasure. Henceforth in this report, source messages and channel

messages are equivalent from the information theory point of view. The
"information" of the finite discrete source representation, subject to the
fidelity criterion, is the information to be conveyed by the channel message.

The intelligence of source and channel messages are the same. The representa-

tion of the messages may differ from point to point, or with particular design.

in a processing system, but the information theoretic message is the same. The

irreversible operation of source processing is called signal conditioning, and
is performed subject to some "tolerable" fiedlity degradation of the continuous

source.

The source processing of messages are described so that all source

coding operations are the strictly reversible operations in the information

theoretic sense. Of course, in the broader than information theory view of

the communication system, it is clear that absolutely perfect replication of

4 the input at the output is not necessary (perhaps not even desirable) and that

deliberately irreversible operations are a vital part of the overall compression

process. Thus, consider a dicotomy of compression transformations; lump

together all irreversible transformations under the title "Signal Conditioning",

and all reversible transformations under the connotation of "Source Coding".

Without dwelling extensively on the design of signal conditioning trans-

formations, one can at least pause to reflect on their relation to the overall

source processing picture. As remarked earlier, there may be a number of

different reasons why the total message bulk need not be communicated through

a channel. These reasons are associated with different types of excess bulk,

which in turn can serve to identify the type of transformation needed to

eliminate this excess. Typically, one can describe the general objective of

signal conditioning as eliminating message content which has no (little) utility.

To illustrate, on a subjective basis,a portion of a message might be imper-

ceptible, irrelevant, or unnecessary, and hence without utility. In speech.

absolute acoustic intensity is irrelevant since the listener will probably adjust

some volume control to this own liking anyway. The phase coherent waveform

out of a vocoder analyzer filter is unnecessary, since a reasonable substitute

can be provided by the synthesizer. And finally, any sound whose insertion or

omission the listener could not detect is imperceptible and therefore without

utility. If this type of excess content is to be eliminated from the transmitted

message, it should be accomplished through some irreversible operation.

In contrast, source coding (reversible transformations) as here defined,

has as its objective the elimination of only one type of excess message bulk.

This excess is that part of any message that can be reconstructed by a

knowledge of: the remaining bulk; the type of transformation that removes the

excess; and certain characteristics of the process or mechanisms that produce

the message. Note that the elimination of this type of excess, or so called
"redundancy", must be accomplished with transformations in the representation

5



of the message to reduce the apparent source bulk rate, or entropy. Fidelity,
in the information theory sense, is to be retained in measure, not just on a
subjective criterion of perception by the ultimate message sink.

The total of source processing as referenced earlier, has been defined
as the composite operation of signal conditioning (pooling of bulk) and source

coding (pooling of information). We are interested in the latter. An example
for comparison accentuates this partioning of interest.

The difference in the output source bit rate of a vocoder as compared to

standard pulse code modulation (PCM) coding of the input speech signal is a

good example of reduction of source bulk rate through signal conditioning.
In fact, it appears that the vast majority of prior speech compression efforts
have been devoted to signal conditioning operations. The very phrase brings to
mind a whole host of techniques which clip, chop, slice, and in other ways
grind up speech waveforms to eliminate the parts that have no utility. Of

course, the compression achieved has been less than ideal, since some useful
message content is unavoidedly destroyed by most or all techniques. In fact,

it has appeared at times that the process was "bottoming out" and that no
further gain could be made without intolerable losses in fidelity. Nevertheless,
throughout this intensive search the possibility that additional compression
might be obtained by completely reversible, fidelity-preserving transformations

seems to have been largely ignored except at a remote distance in theory.
Although this motivation is by no means unique to speech compression work,
application of source coding concepts to speech should be particularly

productive. To restate it then, the basic purpose of this project was to

investigate the application of source coding concepts and techniques of speech
compression.

B. TERMINOLOGY AND MEASURES

For vocoded speech sources, and many others, the message bulk is
available for transmission in the form of a sequence of symbols from a given
alphabet. Compression of message bulk by source coding is the operation of

transforming such sequences of symbols into a new second sequence of •ymbols,
where the second sequence is smaller in some sense than the first. These

operations are always defined here so that they have an inverse. In coding
theory, the first concept to be grasped is that messages (entire sequences of
symbols) are the basic entities produced by sources and operated upon by
source coders, even though the coding operation is performed in time upon
groupings of symbols within the entire sequence.

As an illustration, a speech sample of given duration is represented at

the output of a vocoder analyzer by a finite length sequence of symbols in

ordered groupings called frames. Consider the portion of each frame represent-
ing energy content at the sample time in the spectrum channels. In this instance,

the symbols of interest represent amplitude levels of the spectral energy. (

I



In all instances, the set of permissible values that a symbol can have is called
its alphabet. Almost always, for considerations here, all symbols in a
sequence will have the same alphabet. For the most part, we are interested
in messages formed of symbols from a discrete alphabet. Development on
this basis in no way constrains the generality of resulrs, as is amply shown
in the primary references.

W The measure of message bulk (or bulk rate) most suitable for present
purposes presupposes further notions about messages and sources that produce
messages. In particular, the very nature of what constitutes information, and
ones ability to measure information rate, must be described in terms of
uncertainty. The uncertainty as to what message (or information) is to be
communicated by a collection of symbols depends upon the probabilitiesI associated with the selection or generation of messages at the source. It is
this uncertainty that must be resolved by the correct reception of the message.
Before reception, there is at most a probability associated with any one of a
set of possible meanings implied by the symbol collection. Thus, the informa-
tion content of the symbol sequence is to be defined in terms of the probabilities
for all allowable messages. The source is described by (1) what messages it
can produce, and (2) the probabilities of occurrence for each.

For each allowable message, Xa, that a source might produce, a pro-
bability, or probability density, P., is defined for its occurrence. Since any
message produced must be one of the allowable set, the sum of probabilities,
z Pa,* is unity. The set, {Xa) , and the associated probability measure, {Pa,)
is called an ensemble. For convenience, a finite message of length N + I symbols
will usually be represented by the explicit symbol sequence, Xa = (xai, xai - 1,

•xai - N)- Similarly, the message probability is represented by the joint

probability of the finite symbol sequence, Pa = P(xai, xa . xobabiNit"

Also, the conditional probability, P(xai / xai - , . - N) is the probability
that the symbol, xai, follows the N preceeding values, xai - 1, -. , xai- N},

5 in the sequence. Source ensembles for which communication problems (including
the type we consider) can be described analytically are restricted to have
certain statistical properties. Those properties will be noted as they are
required.

In the preceeding paragraphs, signifiance of the representation of a
message was discussed. It was noted that the information conveyed by the
message was independent of the representation. In the following discussion
source messages are assumed to be of finite length. The theory does not
require this assumption, it is a matter of convenience for those not familiar
with the subject. Even though the alphabet of message inputs to the standard
discrete channel could be arbitrary, it is practical (to say the least) to assume
a binary representation. The object of efficient source coding is to minimize
the expected bit rate of this channel. The fundamental theorem of source codingl
states that finite length messages, Xa, may be coded into uniquely decomposable
binary sequences of length, 1:

7



I
(1) - H' -- -. aP(Xa) log2 P(X&). (1)

(2) I may be made to approach H' arbitrarily close by

coding message symbols in sufficiently long groups. I
Several observations of this theorem are in order.

Uniquely decomposable means that output messages may be joined end-to-
end without special punctuation and it is still possible to determine where one
message stops and the next begins.

The lower bound on I , H', depends only on the probability of
occurrence of source messages and not at all on the alphabet of original
representation. This measure, thfe now familiar entropy statistic, is the
practical reference required to discuss minimum bit rates of a discrete
channel. Information is thus measured by the minimum number of bits
required to convey the uncertainty of the source message through the standard
binary channel. The theorem as used here is not in its most general form, but
adequately serves the purpose intended. Further comment on entropy as a
practical measure will clarify the problem of ideal source coding.

In general, it is more convenient to use a measure of information per
symbol, H, as a reference so that the length of messages is not explicity
involved. For messages arbitrarily long, the average information per symbol
in a sequence of length-N approaches the average information per symbol.
generated by the source as N increases indefinitely to the length of messages
produced by the source. That is,

1

N 1iN) log2 P(xa'i . xiN) . (2)

This expression also requires comment.

The definition, Equation (2), is an expectation formed by averaging over
all messages of the source ensemble. As is the case for most ensembles when
using the entropy measure, averages just cannot be formed in this manner for

speech sources. Thus, a hypothesis of the ergodic theoremZ of probability
(measure) theory is assumed so that an average over the ensemble of messages
may be replaced by a time average over any one message of sufficiently long
duration. This assumption must be remembered, since spoken messages I
certainly have structure that depends upon the speaker, or classification
of speakers.

In the development of approximations for source entropy, the limit
expressed in Equation (2) is truncated. In such instances the joint probabilities
for the N symb'ol sequences depend explicitly on the time origin index, i.
These same probability measures are used to derive source coding transforma-
tions. Again for practical considerations (at least in a preliminary investigation),
it is necessary to assume that these probabilities are independent of the time

origin of observation. A time series for which this assumption holds is said to
be stationary.

8



These assumptions are restrictions on the source ensembles for which

source coding transformations may be analyzed precisely. They are theoret-
ical considerations, and as such are observed in practice only to the extent
that one can assess (and is willing to lable) cause and effect. This assement is
a typical, and difficult, association of model experience. One is tempted to say,
"let the results speak for themselves.!

Equation (2), with its practical limitations, is the reference that
serves the present need. The minimum possible channel bit rate implied

by this measure can only be achieved (arbitrarily close) by rather compli-
cated coding schemes. The fundamental channel coding theorem is an
existence theorem that in one form or another appeals to the coding of long
sequences of symbols. That is, a coding procedure of approximating
arbitrarily close the definition of the source entropy. The description of
such procedures is called ideal coding. It is important to establish bounds
on the measure of source information rate, and a procedure for approaching
an ideal coding to achieve any reasonable bound.

An attempt to measure the true entropy of an ergodic source would

entail the gathering of statistics implied by Equation (2). This task would
be of exceedingly great proportions for a source of any significant complexity.
Rather than attempt the task in that manner, upper bounds may be established
with probabilities more subject to practical measurements. These bounds
are defined in terms of the conditional probability measure mentioned above,
and the related marginal probabilities,

P(xai- 1 xai_ .... xaiN)

defined by,

SP(xa. 1a x )

P(xai/xai -I1 .... xai -N) 1 xi x i-Na a

P(x a i' ".xa

(3)

Any entropy measure determined by substituting one of these probabil-
ities into an expression similar to Equation (2), without the limit of long
sequences, will be called an "apparent entropy" (or information rate) to
indicate that it is the entropy revealed or "made apparent" by the probabil-
ities actually measured. This rate is defined subject to the ability tomeasure

the relevant probabilities. That is, the uncertainty in the minimum channel
bit rate is contingent upon what probabilities are actually known, or accur-
ately estimated. In attempting to reduce this uncertainty to a minimum, it
is convenient to establish criteria or references for use as comparisons.

The relative entropy of a source is conventionally taken to be the

ratio of the true source entropy, Htrue, to the maximum value, Hmax, it
could have while restricted to the same symbol alphabet. Maximum

9



uncertainty is expressed by all symbols being equally probable, thus Hmax
log 2 M, for a discrete alphabet of M symbols. A convenient performance rating
for any coding scheme is its compression factor defined by the ratio Happ/Hmax.
Thus, the relative entropy is the maximum compression possible by encoding
into the same alphabet. One minus the relative entropy is the "redundancy" of
coding with the Hmax scheme. Any ideal coding is an attempt to approach the
maximum message compression by coding to reveal Htrue. In a practical
situation Htrue will seldom be known. Therefore, the goal of practical source
coding is to make the ratio Hap/Hmax as small as possible. Only estimates
of how well H app approaches true may guide these efforts.

By accumulating the necessary statistics for sequences produced by a
source, one could attempt to measure a close bound on the true source entropy.
If the limit in Equation (2) converges rapidly, the message representation is
suitable for an efficient coding scheme. If long sequence probabilities are
required for the apparent entropy to converge, no feasible, much less efficient,
coding scheme of the "ideal" type is possible. The convergence of apparent
entropy measures with increased sequence length depends upon the intersymbol
influence of the message. Stated in more detail, speech source structure is

known to contain elaborate organization over both time and frequency intervals. 5
This organization of the source is reflected in the signal (message representation)
by constraints between symbols of the message. If symbols of the message were
not constrained, that is, were statistically independent, the entropy could be
measured and utilized by observing single symbol statistics only. The mini-
mum possible bit rate could be achieved by coding symbols one at a time.

However, speech sources do not have this simple structure. The
information produced by the speech sounds is spread over the message length.
Any attempt to efficiently code the signal produced by such a highly organized,
or "predictable, " source requires that a large number of terms in the mes-
sage be retained in a memory and coded at one time as a group. Probabilities
must be accumulated for the occurrence of each such group. In addition, and
more significant, a code book or equipment for identifying the assigning
variable length codes must be part of the encoding system. For coding of
sequences of N symbols from an alphabet of L levels, LN entries are required
for the code book. Substantial intersymbol influence in vocoded speech will

be shown to exist over multiplexed sequences at least 36 or 54 symbols in
length. For eight level quantization of channel amplitude values, code books
with about 1032 or 1048 entries would be necessary - obviously an impractical
state of affairs. Instead of multiplexing the channel samples, sequences from

each vocoder channel could be processed by a separate encoder. For coding
of channel sequences only two or three symbols in length, 18 encoders with
64 or 512 entries respectively would be required. It is a matter of record,
that rather than go to this complexity and expense, inefficient single symbol !
statistics have been used with the simpler variable length encoding schemes.
Or worse, maximally inefficient, and less complex, fixed length codes have
been assigned on a uniform probability distribution over the symbol alphabet.

i
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Certainly, for a great many communication systems similar to those

of concern here, maximum efficiency of transmission is just not a great
concern. For high priority digital links where transmission efficiency is of

concern, cost and complexity may be justified (within reasonable bounds)

for sophisticated processing. More generally, however, it is argued that

channel bandwidth or power may be increased more easily and possibly with

less expense; alternatively, the acceptable limits on fidelity are reduced

so that inefficient coding techniques remain in vogue. These arguments have

merit in many instances as far as the numbers trade-off is concerned. On

the other hand, considerations regarding maximally efficient utilization of

existing equipments may reach different conclusions. In any event, for the

present or for the future, a fresh approach to the ideal coding has been

developed, and is described in the framework of the terminology presented
herein.

C. AN APPROACH TO IDEAL CODING

The primary concept of approaching ideal coding by predictive trans-

formations of the message representation may be stated quite briefly. Rather
than observe and utilize probabilities for long sequences, an attempt is made

to transform the message presentation in a manner that includes as much as

possible the influence of these probabilities, resulting in a new representation
with lower apparent entropy in short sequences. In particular, the apparent
entropy of major concern is that of the single-symbol probabilities. It is
desired that as much as possible of the source redundancy be transformed to
the single-symbol statistics, not over sequences of greater length. These
concepts and procedures are iterated and reiterated with the hope that some

intuition and i'sight may result.

The true entropy of a source is bounded by two forms of measuring

apparent entropy. The first is represented in terms of the entropy of marginal
distributions of an N + 1 symbol sequence. The inequalities,

H(xi xi ... xi-N) :5 H(xi) +H(xi-1 ... xi-N): S- H(xi)+H(xi-) +.- +H(xi N),

are an expression similar to what has been said previously. The equalities hold
only if the message symbols are statistically independent. At any stage in
extending the probability measurements over longer sequences, the entropy

can be no worse than that computed with shorter joint probability observations.
The second inequality,

H(xi, xi- 1 . x... Xi-N)S- H(xi-1  . xi-N) +H(xi /xi 1. x Xi-N)' (5)

has a similar interpretation, but is defined in terms of the Nth order conditional
distribution. Combining the two forms of inequality concerning the entropy of the
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sequence, there results,

H(xi/ xi_ 1  . . xi.N) : H(x ), (6)

which shows that the entropy of the symbol, xi, based upon a knowledge of past
symbols in the sequence is a better (at least can be no poorer) measure of the
average information per symbol than the entropy based upon the first-order 1
marginal or single-symbol statistics. For organized sources, the strength of
the inequality increases with increased N, asymptotically to the limit over
which intersymbol influence exists. The implication of this relation is that I
rather than attempt to tode long sequences to achieve ideal coding, one could
attempt to predict a present symbol by utilizing an approximation to the con-
ditional distribution dependent on past symbol values in the sequence. This I
process could be disasterous for some sources. A poor approximation could
give a transformed symbol value containing all the information of poor pre-
diction. However, for sources with message statistics such that a reasonably
simple and accurate approximation function exists, there is the potential of a
good bound on the true entropy. In fact, one can improve the estimate of this
bound by a further consideration

The nature of the measure of information (rate) leads directly to the
Averaging Theorem, stated simply as follows. Any transformation of the
symbols (or sequence of symbols) that tends to equalize the probabilities of
occurrence of the symbols (or sequences) will produce an increase in the
entropy of the symbol(or sequence). The converse holds, and is of primary
concern here. If the probabilities of occurrence can be "peaked" within a
symbol alphabet, the bits per symbol required to transmit the information of a
symbol or sequence can be decreased.

Conceptually then, in designing practical source coders, it is desirable
to perform transformations that peak the probabilities over the new symbols and
thereby decrease the apparent entropy. Transformations of this sort must
preserve the true source entropy. Recall that the apparent entropy of a symbol
(or sequence) is that which can be measured as a bound on the true entropy.
The lower the apparent entropy, the better the approximation to the relative
source entropy, and the more the compression available in the redundancy
of the source is achieved. Also, to the extent that intersymbol influence is
removed, the transformed symbols are independent, and accordingly, are
easy to code efficiently.

To summarize at this point, recognize that: (1) ideal coding to approximate
true source entropy of an "organized" source entails the consideration of coding
with long sequences over which the intersymbol influence exists; (2) the large
code-book and statistics of distributions over long sequences prohibit the
direct approach of the definition of information for coding of most organized
sources (that is, sources of interest imply highly redundant first-order coding);

1
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(3) the redundent information of organized source messages that is evidenced
by the intersymbol influence of long sequences may be removed by sufficiently
accurate transformation that utilize the constraints of the conditional prob-
ability distribution of the original sequences; (4) transformation of this sort
can be realized, at least conceptually, by implementing techniques that
preserve the true source entropy but "peak" the symbol probabiLi.ies thereby

decreasing the apparent source entropy; and (5) as the apparent source
entropy of the transformed message decreases to a close bound on the true
source entropy, the redundancy of this representation approaches the min-

j imum, implying that excess bulk has been removed in the information theory
sense There remains the choice of a form of transformation that can be
implemented and will accomplish the results just described.

D. PREDICTIVE CODING TRANSFORMAATIONS

The previous sections were intended to motivate what at the beginning
was labeled source coding. Source coders are transformations of the message
representation for purposes of removing "redundant" message bulk. That is,
a compression of bulk is to be achieved by representing the message in a
maximum information per symbol manner. The design of source coders is a
two-step process. First one must discover and measure the statistical con-
straints which govern the production of symbol sequences by sources, and
then develop means of removing the predictable (redundant) message content.

From one point of view, identifying the predictable structure of the source
ensemble is the easy part of the procedure because each and every character-
istic of speech that makes it look or sound different from band-limited white
or flat noise constitutes a constraint on the source distribution and thus,
indicates a potential compression. However, from the very practical point of
view of the problems discussed with regard to ideal coding, the statistics
necessary to identify all redundancy (measure true entropy) are not simple
to accumulate. Thus, a restriction is imposed on the "kinds" of predictable
structure that can be recognized. It follows, that the transformations for
removing redundancy are likewise limited.

No practical theory of source coding has previously been developed.
j The approach that has been proposed here for reducing the apparent entropy

of a restricted message ensemble is in essence a transformation of message
representation that utilizes a knowledge of past symbol values in a sequence

Sto predict a current value, or more specifically, the "expected" current
value. A peaking of probabilities over the symbol alphabet is to be realized
by coding only the error between the actual and the predicted symbol value.

There is theoretically no limit on the form of transformation (classes)
that could be used for predictive purposes. The choice of any one form is
dictated by the feasibility of obtaining statistical information necessary to

13



evaluate its merits, and the complexity one is willing to accept in analysis.

There are limited classes on nonlinear forms for which analysis of choosing
the optimum member may be performed with reasonable effort. These classes
are primarily nonlinear means of ccmbining linear analysis, and are not worth

general discussion. The simpler classes of linear transformations have been

used to pursue the analysis of this investigation. For this limited class, tech-
niques of analysis are available and the necessary statistical measurements
turn out to be most reasonably acquired. As one might observe in Section III,

even the simple linear analysis can be difficult due to sheer magnitude of size.

With a limitation on the class of acceptable transformations, it is rather

obvious that the optimum function in the class is the one that results in a
minimal apparent entropy representation of the transformed message ensemble.
Here also, there is more to be considered. The criterion of minimum H
may be difficult to apply directly toward choosing the optimum transformaion

of a given linear form. In fact, a very interesting, and messy, variational
problem exists for describing this situation. As a simpler (and in most cases

just as effective) criterion, the form of linear transformation is chosen so that
the errors in prediction are a minimum in the root mean square sense. This

criterion provides a "best" predictor in the sense that the expected prediction
error is zero, intersymbol correlation is removed, and the degree of peaking

of the distribution about a single symbol probability is explicitly maximized.

The latter follows from the minimum variance (minimum rms error) property,
which also implies a minimal entropy (uncertainty) representation in the
absence of other information concerning the source ensemble.

The transformation scheme may be represented in the form,

Yi = xi - Pi. (7)

where y, denotes a symbol of the transformed message representation, xi
represents a current symbol value, and pi is a number computed from the
linear form,

ciix-j, (8)

as a prediction of the value of xi based upon past symbol values. Note that the
objectives of both transformations described qualitatively in the motivating

remarks are incorporated in this single transformation. For a best rms
sense prediction of the mean of the conditional probability distribution,

Pi = xi = E(xi/xi- 1 , .... xi-N) (9)

it is easily shown that the resulting error term distribution has minimal variance
and zero mean. Since a transformation of this type represents a simple trans-
lation (no change of scale) in the mathematical sense, true entropy is preserved
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over the discrete alphabet. Also, in the terminology of statistical regression
analysis, a predictor of this type is "best" in the maximum likelihood sense
if the resultant errors are normally and independently distributed. It will be
seen later that these conditions are for the most part satisfied with prediction
models utilized in the study Verific-ation of the independence condition would
imply that the transformation yields a new sequence with apparent entropy
closely bounding the true source entropy. There are several other desirable
consequences of this predictive transformation that occur as by-products of
the design criteria A discussion of these features is incorporated in the
analysis of results.

Properties attributed to the predictive transformation could just as well
be discussed in the terminology of Markov processes. An Nth order Markov
process is a stochastic process for which each state (or symbol, in our
application) depends only on the N previous states (N past symbol values) of
the process. This terminology is mentioned in passing, since a process of this
type is easy to visualize, and any approximation of the message conditional
probability distributions is an approximation with confidence measures express-
ible in terms of Markov processes. No great benefit is derived by phrasing
the analysis in this terminology, but a reader familiar with such processes is
alerted to the parallels.

The primary objectives of this investigation were pursued subject to
the theoretical motivation and limitations expressed in this section. The
remaining sections of this report must necessarily describe how physical
reality evolved from conceptual model.

I
i 15



SECTION II

FORMULATION OF PREDICTIVE CODING SYSTEM

A. LINEAR LEAST SQUARE PREDICTION

Before considering in detail the block diagram of a (transmitter-

receiver) predictive coding system, a detailed familiarity with the component

blocks is helpful. The predictor function is of most immediate interest.
Along with the motivation toward simplicity of analysis and hardware implemen-

tation, the linear approach to prediction is a logical "first-step. " A first
approach to nonlinear functions may be considered a correction process

applied to a linear approximation. With or without this generalization in
mind, the effectiveness of the linear attempt needs to be well understood
first. If the simpler techniques Can accomplish the job. (and can be evaluated),

it is unnecessary to proceed with further complication.

The theory of time invariant linear least square (LLS) prediction dates

back to the early work of Gauss, and the least square norm is fundamental to
most of the mathematical theory of approximation. In applied statistics, the
LLS methods of regression analysis constitute the backbone of interpolation

and extrapolation analysis, with areas of application far too numerous to

mention. More recently, the Wiener2-Kolmogoroff4 formulations of prediction
and linear filtering* of stationary time series have combined and augmented
results from statistics and functional analysis, and have firmly implanted

this theory in the signal processing analysis of communications. The ground
work is more than adequate, the practical problems of effecting the analysis
remain.

It will be shown in Section III that the source statistics necessary to

compute linear predictors are estimates of the discrete set of time series
autocorrelation coefficients.

lim 1 L (0
= L-oo ZL1 + xixik. (10)I L-•o0 2L i 1 i-L

The estimates are sample measures of the variance and co-variance between
message symbols separated by k terms in the time series. The sufficiency of
these statistics for LLS prediction using N past symbols is the overwhelming
simplicity that results compared with measures necessary for approximating
an arbitrary nonlinear function of N variables.

I A major proportion of this work is equivalent to efficient filter design
for vocoders. An experimental implementation in hardware can be expected

to develop along those lines.
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Both the theory and measure of source statistics for LLS prediction
'require an assumption of stationarity of the time series. That is, the function
that relates the inimediate past N symbols in a sequence to a new value must
be independent of the position of the N + 1 symbol group in the overall message.
The degree to which this assumption is satisfied can influence the prediction
effectiveness far more than the constraint of linearity. In particular, it will
be noted that a single LLS predictor for a multiplexing of all vocoder channels
(treated as a single time series) is not effective, but with separate predictors
for each channel, the stationarity assumption is reasonably satisfied.

As a final comment at this time concerning the source statistics, one
may think of speech source ensembles in many ways. The ensemble consisting
"of all messages from a single speaker is the most reasonable, but limited,
class to discuss. A second class might be a single message spoken by any
male or female speaker. Any arbitrary message spoken by any male or
female speaker would be an enlargement of that class. Or, the ensemble of
all messages spoken by all male or female speakers would include all three
previous classes. Obviously, for communication purposes, the more inclusive
the ensemble over which a given statistical predictor is accurate, the more
economically sound would be the expense of sophistication in signal processing.
"At the other extreme, the more restrictive a measure is over a set of class-
ifications, the more effective it is for identification purposes. Although it is
to be desired, from the communication viewpoint, that statistical prediction
would be effective over a wide source classification, there is merit in a good
prediction function over limited ensembles, if the classification categories
can be identified and the prediction function easily adapted from one category
to another. This connection between the predictor form and the source
statistics must, and will, be accorded further comment in the evaluation.

B. NONSTATISTICAL PREDICTION

A second form of prediction, totally unrelated to the major motivating
arguments, should be mentioned for completeness. Prediction, of a sort, is
the objective of a multitude of nonstatistical interpolation and extrapolation
techniques fundamental to mathematical analysis. For example, consider the
linear single point extrapolation of values in a discrete data series. By
assuming a constant extension of the straight line slope between the immediate
past two known values, the approximate next value may be computed as
indicated in Figure 2. The model is crude, certainly, but it requires very
little computation. It is also a matter of record that in similar applications,
this simple technique has frequently been as effective as the more complicated
approach described above. Slightly more advanced forms are based upon
assumptions of constant curvature, higher polynomial approximation, gaussian
weighted estimates, etc. - a vast and useful theory for appropriate applications.

1
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Figure Z. Linear Extrapolation

The present interest, for the most part, does not qualify for such anI application. Preliminary investigation showed that most of these techniques
result in the aforementioned disaster area -the error sequence containing
all the increased apparent entropy of poor prediction.

As a possible exception to the conclusion of the last statement, one

nonstatistical predictor seemed worthy of further consideration; this
resulting when one accepts the immediate past value of a symbol as the
"best" estimate of the current value. Again, the computation is utter
simplicity. This simple "differencing" scheme can be followed by a trans-
formation of the LLS statistical type. The analysis and evaluation of this
prediction scheme was included in the investigative program, and will be
discussed in detail.

C. DESCRIPTION OF VOCODED SPEECH SIGNALS

The analog speech signal produced by a high quality dynamic micro-
phone can be sampled and processed by a vocoder* to produce a frame
sequence with the character 'ormat illustrated in Figure 3.

VAW I/ 
.

13820

Figure 3. Vocoder Frame Format

Speech data from the i8 channel research vocoder at the Data
Sciences Laboratory, Air Force Cambridge Research Laboratories, was
used for this investigation. The format described here is for that vocoder,
but representative of other designs except for the spectrum normalization
factor, VAP.
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The voice frequency range, 70-4000 cycles, is typically analyzed and
synthesized ,or representation of energy in 18 spectrum channels, such as
indicated in Table I. The channel data used in this study consisted of an
eight-level, logarithmic, quantization of spectrum amplitude values, follow-
ing a normalization process unique with the AFCRL vocoder. A 50 frame
per second sampling rate was used for all data. The VAP format character
is the spectrum normalization factor, and is discussed later in this section.
The V/UV character labels the frame spectrum values as representating
voiced (V) or unvoiced (UV) speech. The PITCH characters represent the
fundamental pitch frequency. The VAP and V/UV characters may be utilized
as a basis for prediction using different source statistics, that is, predictors
computed from voiced only, unvoiced only, or nonsilence only speech
statistics.

In the investigation of predictive coding, only the processing of channel
spectrum data has been analyzed. It is assumed that similar coding of the
remaining frame data would result in further compression of the total vocoder
bit rate. However, this data will vary more with equipment design, and change
with the improvement of new designs, and may be processed separately if
multipurpose use is made of transmission channels, for example, in the
multiplexing of teletype data.

D. PREDICTIVE CODING COMMUNICATION SYSTEM

The operations, constraints, and performance criteria discussed to
this point are now related to a typical processing-block diagram of a system
for communicating vocoded speech (see Figure 4). The diagram should be
self explanatory, but the following brief remarks are possibly of interest.

A description of the processing at the transmitter describes the reverse
operation at the receiver. The previously described frame data represents
the output of the vocoder analyzer. In one form of analysis, the 18 channel
amplitudes are differenced on a frame to frame basis before processing.
As a convenience to analysis, and in no way reducing the accuracy or gen-
erality of results, the statistical mean amplitude values were subtracted
from the channel outputs in the other processing models. This operation
represents a translation of origin in the mathematical analysis and a voltage
reference in any equipment. As indicated, in any analysis or processing
scheme, the separate channel amplitude values in any frame are multiplexed
into an arbitrary serial order. The predictive transformation discussed in
Section I is accomplished by the subtraction of the predicted estimate of a
symbol from its actual value. Since the form of magnitude representation
(analog or digital) is rather arbitrary at this point, it is assumed that the
analog or many-level quantized (quasi-analog) difference must be quantized
for presentation to the Huffman Coder. 2
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Note that the Huffman Coder is but one of many coders that could be
considered to fit the needs and the concept of "standard channel" introduced
in Section I. It happens to be a highly efficient variable code length assignment
scheme, with prefix and other properties to be described later. It also contains
the active memory (buffer) and delay logic necessary for implementing an
efficient variable-length code, and 4ill serve as a model for investigating the
extent of these requirements. Further comments on Huffnman coding are made
later in this report.

To satisfy the requirements for a totally reversible process in the
absence of channel noise, the sum of the quantized difference and the original
prediction are the actual values used in the "feedback" type process for
prediction. As indicated on the diagram, and discussed extensively in this
section, the ci represent the "quantization noise, " or difference between the
value of an original symbol and its approximate value actually utilized in the

prediction of future symbol values. Observations concerning this Ci noise
serve for a comparison of the "fidelity" of the transformed message with the
unprocessed original data input. Any possible psychoacoustic degradation of
quality resulting from c. is indicated at the output of the inverse processingI
at the receiver.

The essence of processing for predictive coding is diagrammed without
the features that distinguish one prediction scheme from another. To allow
for this flexibility, VAP and voicing information are sprinkled liberally
throughout the diagram, and additional such lines of logical interest may be
added as the models are developed and discussed in Section IV.

E. FIDELITY CONSIDERATIONS REGARDING A PREDICTIVE
CODING SYSTEM

In Section I, the overall source processing operations were rigidly,
but arbitrarily, partitioned into two categories: the irreversible signal
conditioning operations, which determine system fidelity, and the irreversible
source coding operations, which exploit source redundancy but have no effect
whatsoever on system fidelity. The objectives in doing this were: first, to
emphasize the basically different considerations involved in the two types ofH compression operations, and second, to simplify the exposition of the principles
of source coding. Implicity, through the diagram in Figure 1, it has been
suggested that the two types of operations could be implemented in two distinct
subsystems connected in series. While a physical system could undoubtedly
be organized in this manner, there is really no commanding reason for doing
so. On the contrary, in a practical system utilizing predictive encoding, there

are very definite advantages to arranging the component operation of the over-
all source processing system in a less disjointed fashion. To be specific, it is
desirable to relocate the quantization process, usually the last step in signal
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conditioning, as an integral part of the prediction procedure. However, when
this latter order is used, the net or effective signal conditioning procedure
is unavoidably changed when compared to the former order. Consequently,
fidelity considerations must be reintroduced into the discussion of source I
coding operations. Three questions need to be discussed in this section:
(1) the source processing configuration most desirable from an overall system

effectiveness point of view, (2) the manner in which this configuration alters
fidelity as compared with a straight "serial" configuration, and (3) the study
questions generated in connection with this modification relative to the
idealized system that are suggested by the discussions of (1) and (2).

To anticipate a possible misunderstanding at this point, it should be
noted that the encoding process per se is still required to be strictly reversible.
The suggestion is that the signal conditioning operation can be revised slightly
to improve the effectiveness of the combined compression operation. Although
a true determination of fidelity can only be achieved through psychoacoustic
methods, there is good reason to believe that the "modified" system would at
least preserve, and would probably enhance, the fidelity of the present
AFCRL vocoder.

In order to have the encoding process be reversible, the prediction, pi,
must be computed via a closed loop or feedback procedure. To realize this,
one observes that the predictions developed at the receiving end of the system
must necessarily be computed from the error signals, yi, because this is the
only data available. Clearly then, it is required that the predictions developed
at the transmitter be exactly equal to those produced at the receiver. One way
to ensure this is to simply duplicate the receiver's processing at the trans-
mitter. This scheme is illustrated by the feedback procedure shown in Figure 4,
which is used in both the transmitter and the receiver. Although it may not be
obvious at this point, it may be shown that a feedback procedure of this gen-
eral type must be used if both coder and decoder are to have finite memories.

This feature of reversible predictive encoders is necessary regardless
of whether the signals involved are analog or digital. However, let it be
supposed for now that the input in Figure 4 is a sequence of integers, and
suppose also that the output is to be fed into a Huffman Coder designed to
accept sequences of integers. Such a system is not reasonable, however,
because the predictor coefficients cannot be derived optimally as integers.
That is, for optimum predictor coefficients, neither the prediction, pi,nor
the error signal, yi,will be integers, and the error signal is incompatible
with the input requirement of the Huffman Coder. To correct this situation
while still retaining the desired simple form of the predictor itself requires
that other system components be modified.
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One possible solution is to simply round off a prediction to some integral
value at point A in Figure 4. Because the same round-off rules can be used in
both transmitter and receiver, the resultant encoding process is reversible.
This scheme has a "philosophical" advantage in that it precisely fulfills the
idealized demand imposed on source coding in Section I. That is, it is a
reversible process, having no effect whatsoever on system fidelity. It has
the disadvantage however of lessening the effectiveness of the prediction.
Further, it is contingent on the assumption of integral valued input.

Insofar as the compatibility of the error signals with the Huffman Coder
is concerned, the round-off procedure could just as well be located at point B
or C of Figure 4. In either of these positions, it is easy to see that there is
a direct path along which the round-off noise can pass so as to appear in the
final output and possibly degrade overall system fidelity. Setting this vital
aspect aside temporarily, consider just the effects of choosing either
location B or C.

First, it should be clear that the entropy of the error signal is directly
increased by the addition of round-off noise at either point B or point C.
Therefore, the average bit rate of the Huffman Coder output will be increased
in either case. Next, in addition to this direct effect, note that a round-off
operation applied at point C in the transmitter cannot degrade prediction
accuracy as it can when applied at point B. That is, in case B round-off
errors can circulate around the loop indefinitely, whereas in case A they
never enter it. From this observation, one might hastily conclude that
point C is the preferred point at which to perform round off. To show other-
wise, the following consideration of how round-off error affects the prediction
in the receiver loop rules more or less decisively in favor of rounding-off
at point B.

Clearly, when round-off is performed at point C, the predictions
produced in the encoder and decoder will differ. In the former device they
are computed from the unrounded error signals, and in the latter they are
computed from rounded error signals. It follows, that in this case round-off
error can accumulate indefinitely in the receiver loop with the result that the
receivers predictions amount to nothing more than random numbers,
essentially independent of the source signal being encoded at the transmitter.
The result is an irreversible process, and rounding-off at point C can have a
completely devastating effect on system fidelity. Although there are techniques
whereby the build up of round-off errors in the receiver loop can be controlled,
these techniques usually require greatly increasing the size of the memory
used in the receiver. To all intents and purposes then, one is obliged to
insert the round-off procedure at point B. When this is done, it may be noted

I that the predictions produced at each end of the system are identical. Except
for the round-off error which is added only to the final system output, the
net encoding scheme is reversible.
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Consider now what can be done about the round-off error and its effect
on system fidelity. Recall that at the beginning of this section it was assumed
that the input sequence to the source coder was a sequence of integers.
Obviously, the entire question of round-off error stems directly from this
assumption. As was noted, this sequence of integers was in reality produced
from analog data by a quantization procedure performed as the final step in
the signal conditioner. It should be clear that quantization and round-off are
nearly identical operations, and should have nearly identical effect on system
fidelity. In fact, so similar are the operations and their effects, that round-
off is sometimes referred to by others as "the second quantization." When
viewed in this fashion, it is natural to ask if the system could be designed so
that just one "quantization" process would be required. In answer, it is
immediately apparent that a quantizer preceding the source coder may be
eliminated and a new "equivalent" one may be inserted at point B. This
arrangement is the final step in arriving at the coder configuration assumed
as a model in this study.

At this point is is tempting to simply identify the quantizer as the only
source of error in Figure 4, and then to assert that the source coding has
been added without affecting system fidelity. Of course, with the signal
conditioning and source coding operations thoroughly scrambled together as
they are in this model, it is rather meaningless to try to attribute resultant
system errors produced to either process. More to the point, it must be
admitted that the precise nature of the quantization performed on the signal
has been changed by moving it to a new location. The psychoacoustic testing
is the only true test of system fidelity. Except for a few comments, the
reader will readily be able to interpret for himself the probable effects of
the processing system configuration on fidelity.

Two effects must be considered. These effects arise because real
quantizers, such as that in the AFCRL vocoder, actually perform two operations
on the input signal. Besides "rounding-off" analog values to nearest of several
discrete values, real quantizers also clip large excursions of the input
signal. * To explain the changes made to these two operations when the
location of the quantizer is changed, it is convenient to consider the operations
separately. First, ignore the clipping effects by considering quantizers which
have a number of levels so large that the input signal is never clipped.
If one assumes that each quantization interval has the same width, and the
value assigned to an input value falling within a given interval is the mid-
point of that interval, then the concrete statement can be made that the mag-
nitude of the quantization error never exceeds more than one half the width of
the quantization interval. Figure 4 illustrates that the subtraction of the
prediction, pi, from an input value, xi, is simply a scale preserving translation

*

Even when systems employ an AGC capability, there remains some
clipping of peak signals. This is particularly true for peaks occurring in
shorter time periods than the time constant of AGC circuit.
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of the origin from which the value xi is measured. Consequently, if a quantizer
(which does not clip) is moved from a position immediately preceding the
source coder to point B within it, the maximum possible quantization error

4 is not changed. Thus, the only way in which the relocated quantization process
differs from the original is through the continuously varying position of the
intervals with respect to some absolute reference point. In most utilizations
of quantizers, fidelity depends only on the relative width of the quantization

intervals and not on their absolute position. It seems highly improbable that
a listener will perceive this effect.

The changes in the clipping operation itself, and in its effect on fidelity,
are both more relevant and more difficult to assess in advance of experiment.W In contrast with the above, the effect on fidelity resulting from a clipping
operation can be expected to depend significantly not only on the number of
quantization intervals between the clipping points, but even more on the
precise location of these points with respect to the absolute reference to which
the input signal is measured. Thus, the prediction process, which effectively
results in a time varying translation of the quantization intervals with respect
to the absolute reference, will probably have a pronounced desirable effect

on fidelity. A few observations may be made concerning this effect.

Certainly one can expect system fidelity to depend upon the frequency
with which input signals are clipped. Insofar as this aspect of clipping is
concerned, one can expect the prediction process to improve fidelity by
reducing the number of times an input signal suffers clipping. To understand

why this should be the case, recall the earlier discussion concerning the
probability distribution of the original input symbol, xi, and the error
symbols, Yi" (In preceding paragraphs, these symbols have been considered

to be discrete, or digital, numbers. The argument applies equally well to the
present case where the symbols are continuous, or analog values.) The first

order marginal distribution of the input symbols is relatively broad. The
probability that an input symbol will be clipped is represented by the area
under the "tail" of this distribution beyond the clipping point. In contrast, if
the prediction process has been even moderately effective, the distribution
of the error symbols will be relatively narrow and will have most of its area
concentrated between the clipping points, usually around the midpoint. Thus,
the probability that an input symbol will be clipped should be less when the
transformed signal is quantized than the probability when the input symbols
themselves are quantized. This effect has been demonstrated and measured

in the experimental program.

In passing, it should be noted that the influence of clipping also depends
significantly on the exact time at which the clipping occurs. Certain parts of
the speech waveform are more important to the listener than others. In this
regard, there could exist a tendency for the modified configuration to clip

"frequently at the transition points between phonemes, if prediction accuracy
deteriorates significantly at these times. This question has not been studied

experimentally.
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Finally, there is one last aspect of clipping that requires comment.
It is explicitly assumed that the width of the quantization intervals were kept
the same when the quantizer was relocated. Implicitly at least, it is also
assumed that the number of levels should remain the same. There is, however,
no commanding reason for imposing this requirement. In retrospect, it seems
clear that the choice of precisely eight quantization intervals (used in the
AF•RL vocoder from which data was obtained) instead of say, 7 or 9 intervals,
resulted from the desire or assumption that conversion to three binary digits
would follow the quantization. However, where a variable length coding system
is to be employed, any number of quantization levels may be used. In partic-
ular, the number of levels may be adjusted as necessary to obtain a desired
degree of fidelity with little effect on the output bit rate if predictive coding
is utilized. Further, with the unimodal distribution resulting from the pre-
dictive transformation, it should follow that the number and width of quanti-
zation levels may be adjusted in a very controlled manner. Because, as a
result of the prediction process, the error symbol distribution should be
highly peaked compared to the input symbol distrikution, increasing the
number of quantization levels should also result in a much smaller increase
in the resultant average bit rate from the rearranged system than from the
original. This effect has also been studied experimentally.

F. LIMITATIONS IMPOSED BY SAMPLE SOURCE DATA

As always seems to be the case, the speech samples used in this study
impose certain limitations on the precision, significance, and extrapolation
of the experimental results. For the mos.t nart, these limiting characteristics
of the data are either discussed in othe. dions or are left entirely for the
reader to infer. In this section, four characteristics not covered elsewhere
are discussed.

First, there is the fact that the speech samples used were already
clipped and quantized to eight levels, whereas the coding system being
analyzed would preferably operate on the analog signal as it appeared before
either of these operations. In the experimental work there was no choice
except to treat the quantized values as if they were the actual sample values
of the original analog waveform. Insofar as the steps leading to the design
of the predictors themselves are concerned, the fact that the raw data has
been quantized probably has little or no effect. The clipping on the other
hand, certainly does have an effect on this portion of the results, but without
knowledge of the appearance of the speech waveforms prior to the clipping,
it is difficult to comment, 3ven qualitatively, as to its nature. In the second
portion of the experimental work, the evaluation of the net encoding process
through direct simulation revealed that quantization of the original data does
have an effect. As was noted in the preceeding section, quantization introduces
a type of random noise into the sample data. This noise inevitably increases
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) the entropy of the signal being coded so that the average bit rates actually

observed in the simulation are somewhat larger than those which would have
been achieved with the original waveform. How clipping of the raw data affects

the simulation result is indeterminate. These effects will be considered again
in the evaluation section.

The second characteristic of the speech samples to be considered here
is the spectrum normalization feature of the AFCRL vocoder. "Spectrum
normalization" 6 transforms the spectrumpattern to a form that is independent
of the gross voice amplitude. This process is reversible when accomplished
in the following manner. The analog output from each of the channel low-pass
filters is summed at each frame to produce a signal proportional to the total
amplitude of the input voice signal. The sum is called the voice amplitude
parameter, VAP. It is then used as the scale-determining (variable) reference

voltage in an analog to digital converter. In effect, each resultant spectrumj analyzer channel output is inversely proportional to VAP. In this normalization

scheme, a VAP value of zero for a speech data frame implies that all channel
amplitudes in that frame are zero. This result is of considerable importance

j the design of some of the prediction schemes and processing models.

The value of such normalization has been adequately demonstrated, and
it seems certain that the technique will be incorporated in future vocoders.
Many existing systems, however, do not have such a feature. The objective
at this point is simply to warn the reader against incautious application of

the estimated bit rate compression factors to these systems. It is exceedingly
difficult, if not impossible, to establish analytically whether source coding
would be more effective or less effective on unnormalized signals. At this

4 time, it appears that good heuristic arguments can be constructed to support
either conclusion, the weight of the moment favoring more effective results,
since the amplitude constraints of the source (removed by normalization) are
conceivably predictable by the source coding model.

The manner in which the speech samples were originally generated is
the third aspect of the speech data sample that inevitably limits the utility of
quantitative results. Specifically, the original voice recordings were prepared

by having talkers read aloud from lengthy prepared printed text. Two excerpts
from these recordings were selected for use in this study. The same basic

text was read by each talker, but that is not the sole condition to be of concern.
(The experimental results tend to substantiate the original assumption that
choice of specific texts material should not be significant if sufficiently long
samples are used.) It is the simple fact that a prepared text was used that is
of importance. As a matter of contrast, in an actual communication application
the coding procedure would be operating on so-called "conversational" speech.

It follows from the following consideration that this is a difference of major
importance.
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When an individual talks there are short pauses or momentary intervals
of silence interspersed throughout the speech waveform. Many of these, such
as the pauses between sentences, are clearly audible even to an untrained
listener. In addition to these obvious pauses, the so-called "connected" or
continuous part of the overall speech waveform also contains numerous
shorter, and usually inaudible, silent intervals. All in all, a very substantial
percentage of an entire speech signal is dead silence' The present concern

originates with the fact that the exact value of this fraction varies drastically
with the conditions under which the talker is operating. The fraction may vary
from something less than 25 percent for a highly agitated or pressured talker,
to something well in excess of 75 percent for a talker about to fall asleep at
the mike. Generally, one can assume (and has been observed), that when
reading from a text, talkers produce substantially less silence than do talkers

engaged in "normal conversation. "

The compression factor that can or will be achieved by predictive encod-
ing depends heavily on the amount of silence on the input waveform. In fact,
of all the parameters that determine the average bit rate resulting from coding,
the silence-nonsilence ratio is by far the most significant. One is thus faced
with the rather ticklish problem of converting experimentally observed coder
performance based on one type of speech data into predictions of the performance

to be expected in an as yet undefined operational environment.

In this regard, the predictors studied can be conveniently divided into
two categories. Coders in the first category perform exactly the same

operation on both the silent and nonsilent portions of the input signal. In
computing the first and second moment statistics used to design these pre-
dictors, no distinction is made between speech and silence in the raw data.
As a result, the silence-nonsilence ratio for the input data directly influences
the value of the predictor coefficients themselves. As a further consequence,
it becomes impossible to extrapolate the results observed from these predictors
in anything but a qualitative way to speech with a greater percentage of silence.

Coders in the second category operate differently on the two portions of
the input, as is discussed in Section IV. In collecting the statistics needed to
design and evaluate these predictor models, the speech and silence intervals
in the speech sample are handled separately. In this case, the predictor
coefficients are (essentially) independent of the input silence-nonsilence
ratio. Consequently, one can compute and plot coder performance as a

function of this ratio. The only interpolation problem remaining is that of
locating an "operating point" on these curves. That is, the problem of

determining what the silence-nonsilence ratio would be in an operational
situation.

Finally, the limitations imposed by the relatively small number of
talkers used in the program should be mentioned. As is always the case
throughout speech processing work, one can anticipate experimental results
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to vary between different talkers and between individual talkers and the
"average over all talkers. " For the most part, discussion of specific talker-
variability effects is scattered throughout this report. At this point a brief
comment is offered concerning the intended scope of the study and the
attendant viewpoint from which the result must be regarded.

Because information theoretic measures in general have a curious and
hard-to-anticipate tendency to suppress some characteristics of ensembles
and to enhance others, in establishing a program such as this, it is dangerous
to speculate about the probable effect or importance of known characteristics
of the source under study. Obtaining crude estimates of the influence of
talker-variability has been a consideration in design of the research program.
The choice of 10 talkers for the study represents the inevitable compromise
between practicality and the definiteness of results. However, in view of the
observed variations in output bit rate, it is clear in hindsight, at least, that( the number of talkers used does limit the precision of the measurements and
reliability with which they can be extended to operational situations.

G. BLOCK DIAGRAM OF AN ANALYSIS OF A PREDICTIVE
CODING SYSTEM

At this point, the fundamental theory, language, and methodology of
this program should have been made clear. The gap between understanding
what is to be done to achieve ideal coding, and what is necessary for an
evaluation of such an approach, is illustrated by the analysis block diagram
in Figure 5.

I __j
! I ~~~DERIVE[ AND NUMBSERICAL'LY EVAL'UATEr PRIEDI CTOR COrFFI CIENTS

| I ,I

rHUFFMAN CODE THE TRANSFORMED DATA

EVUAESIMULATION STATISTICS7-

13898

Figure 5. Block Diagram of Analysis for Each Model

Sections III and IV contain a detailed discussion of the analysis implied by
this diagram. Section V discusses the conclusions and overall evaluation of4• results acheived during this investigation.
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SECTION III

DERIVATION AND COMPUTATION

OF COEFFICIENTS FOR LINEAR PREDICTION

A. MATRIX NOTATION AND REPRESENTATION OF SOURCE
STATISTICS

It has been indicated, that for the linear form of predictive

transformation,

J -i (11)

-j several processing models may be considered by the statistical or non-

statistical manner of choosing the predictor coefficients. (Recall that xi
represents a message symbol and Pi is a linear prediction of the value of
that symbol. ) In this section linear predictors derived from known source
statistics are discussed. It will assist the analysis of predictor models
to first look at the matrix representation of the general linear predictive
transformation and the computation of source statistics.

The method of ordering past symbol values in the prediction process is
rather arbitrary, but a choice must be made for clarity of analysis. As

before, let a subscripted letter x represent a value from the time series
being transformed. This time series may be the message consisting of
vocoder spectrum amplitude values, or the result of differencing or
extracting mean values from the symbols of that message. In either

instance, the time series may be described as a vector sequence, each
vector representing a set of values for symbols in the vocoder message
frame format. With an 18 channel vocoder, there are 18 components for
each frame vector. Figure 6 shows a typical part of such a vector sequence,
and introduces a subscript notation for reference. (It is important that the
notation introduced here be well understood so that subsequent analysis and
discussion need not be burdened with detracting explanations.) To avoid
the confusion of multiple subscripts, superscripts, and other scripts,
an arbitrary multiplexing order is defined for the symbol elements of this
time series and the symbols that represent prediction error in the trans-

i formation of a current message vector. Corresponding to the message

x18' t - T x18' t - I x18'
Sx17' t -T XlT7' t - i 1lT't

Past .tFuture

-Xl'1 t - 1X~l' t -x 1l' t J

Figure 6. Sample of T + 1 Frames From a Discrete Vector Time Series
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vector at time, t, there is represented a transformed vector following
prediction, where the correspondence between the singly and doubly

-Yl -Y18' t x18' t - P18, t

Y2  Y1 7 ' t Xl 7 ' t - P17 ' t

(12)

L18J iYltLv t -l~ Pi tJ

subscripted elements of the vector y is important. Also, the vector y is not
explicitly assigned a time reference subscript. The vector representing a
multiplexed T + I frame sample of message symbols is denoted by,

XI1S1, t I
x 2  x 1 7 ' t

"Current" frame

X18 x 1 1t

X x19 Xl81 t-

Immediate past frame (13)

xM- 7 x1 1t 1

* Tth past frame

X It -T
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where, M = 18 (T + 1), is the number of components of the vector x. When
discussing a sample or collection of this form, it is occasionally convenient
to use the descriptors given at the right of the vector in Equation (13).

Utilizing the above notion, every linear predictive transformation of
the type, Equation (11), can be represented in matrix form by,

y = Px (14)

where P is an 18 x M matrix. The elements of P are the predictor coefficients.
This transformation indicates the processing for all 18 symbols of the current
frame utilizing the values of symbols from T past frames in the time series.
For time-invariant prediction, the elements of P are constants. The numeri-

cal values of these elements depend upon the form of the prediction model
and the sense of "optimum. " Without restricting the form, one can discuss
the optimum criteria, and derive a general formulation for use in the
succeeding sections.

The least mean square error criterion requires a definition of "expected
value. " In most applications, expectation is meant in an explicit statistical
sense. The general form of the expected value, or mean, of a random

variable, v, is given by

E(v) = 2vp (v), (15)

where p(v) is the probability or probability density associated with the values

of v, and the sum is taken over the entire measure space, Ip(v) = 1. In
many instances, such as the problem at hand, the probability function is not
known and sample estimation methods are used to approximate the expecta-
tion. In particular, it may be shown that for reasonably large 7, the sample

estimate

1 7
E(v) _ ; vi (16)17 i=1I

is a meaningful approximation. Note that it is equivalent to Equation (15)
with p(v) replaced by the sample estimate of the relative frequency of
occurrence of symbol v. When the symbol v in Equation (16) represents a

variable from a discrete time series, the sum is taken over a set of
observations of this variable from a sample of the series. This measure of
expectation is also appropriate for estimates of the second, or product,
moments that are necessary for deriving LLS predictor coefficients. The
second moments may be formed about an arbitrary value of the variable.
With the above definition, the expected second moment of a variable will be
a minimum when computed about the mean, and similarly for product
moments of two such variables.
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The expected value of a random vector (random variables as component
elements) is defined to be the vector of expected values for the components.
The mean value of the vector, x, is thus given by,

E [x 1] X

E [x?] x 2

x EIx] (17)

E [xM xM

Two second moments for the components of the vector x are of interest. The
value E(x~x.) is the estimate of the variance of the ith component element, x.
The value E(xixj) is the estimate of the covariance between the ith and jth
component elements. The matrix composed of such estimates is called the
sample covariance matrix, and is conveniently denoted by

E = E[xx'] = {fai} = {E(xixj)} (18)

where the prime denotes transposition. Since the expe-tation of a product is
independent of the order of factors, ai. = a,, , and E is a symmetric matrix.
In the above notation, the moments ari implied to be about the origin. For
moments about the mean,

E[ (xi - xi) (xj - xJ)] E[xixi - iixX - xiij ýixj

(19)
Elixjx. - x-ixj,

since the expectation operation is linear. Note that for a random vector x
defined by x = v - v, where -; is an arbitrary random vector, it follows that,

x= E[x] = E[v-vI = v-v = 0 (vector). (20)

It is assumed in what follows that the message sample vector, x, is such a

vector with mean removed.

The expected value of a constant matrix times a random vector (linear
transformation) is the constant matrix times the expected value of the vector.
That is, for y = Mx,

y = Ely] = E[Mx] = -•IxI =- M. (21)
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Thus, for the general linear predictive transformation, Equation (14),
the covariance matrices of the message time series before and after trans-
formation are related by

S = E[yy'I = E[Pxx'P'] = PE[xx'j P, = P P', (22)

Wwhere 2; is defined by Equation (18) and s.. will denote the typical element

of the matrix S. The diagonal elements, sji, of S are the variances of the
transformed symbol series, which are also the expected squared error of the
prediction scheme. All variance-covariance estimates are proportional to the
linear correlation between the respective variables. The application of the
minimum mean square error criterion implies that one chooses the elements
of P, subject to other constraints on the form of predictors, such that the
diagonal elements are a minimum. It will follow, that the off-diagonal
(covariance) elements have expected value zero. Thus, the linear correlation
of intersymbol influence is expected to be zero for the transformed sequence,
implying linear independence of the symbols.

One subtle feature needs to be clarified in the discussion of computing
expected values. To compute a sample covariance matrix such as 1., an
assumption of stationarity is made regarding the nature of the message
source. If the time index of such a sample is indicated for the moment by a
superscript, the set of vectors (x 7 , T = T, T 2 , .... T77), may be described as
Y sample vectors taken from an appropriate speech sample at frame times
denoted by T. With this notation, the sample covariance matrix is given by,

, 7 T

T=T

or

I 1 T i= ,7ij =- 1 xi xj , j . M" (24)
T=TI

One further notes that the multiplexing of frame data to form the vectors
(xT) implies a relation between the component subscript and the time index.
For instance, the first component of a vector x T at time t is the same as the

V ic1h component of the vector xT taken at a time one frame later. Any assump-
tion regarding the lack of dependence of the sample vectors on the time
index is an assumption of stationarity of the source ensemble. Obviously,
for the sample covariance matrix to be independent of time, some assumption
of stationarity must be made and the matrix computed accordingly. It has

N been assumed that expected values of the source statistics are independent
of the frame time unit used in Equation (24). This assumption is reasonable,
whereas, an assumption that the multiplexing could be accomplished with a
symbol time index, and statistics computed accordingly, was evaluated and
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found quite unreasonable. We emphasize that the assumption of stationarity
over frame "Yne units is the primary motivating factor for use of matrix
representation.

A faMiliarity wiLh the above notation, and an understanding of what
and how source statistics are accumulated, are sufficient background for
developing explicit prediction forms.

B. EQUAL LENGTH PREDICTORS (ELP)

The general form of linear predictive transformation was introduced
as Equation (14). In this section the system of equations is derived that
must be solved for the coefficients of predictors that are separate and of
fixed length for each vocoder spectrum channel. This form will be compared
in the next section with a model where the length of the predictors are not
the same for each channel. The reasons for developing both models will be
discussed at that point.

The equal length predictor model is denoted by the matrix
transformation,

y =Ax,

where,

""- . 116 "117 'IN 0 0 . . 0

0 1 1 "2 16 "217 .. 1 . .'2. 0

A =(aij)= .(26)

-0 1 a7. - -- 7N - 16 o'17N - 15 •'17N 0

0 0 0 11 181 17. . 16 8N - 16 a18N- 15 181N

and the vectors y and x are as before. The order of elements in the numeri-
cal computation of predictor coefficients is a confusing permutation of the
order used to indicate the computation envolved in the processing of actual
messages. The issue is further complicated by the constraints of the model
which are represented by the correspondence of a typical element, aij, with
the appropriate element as given explicitly in Equation (26). This corres-
pondence is further illustrated by the equations,

M
yi = 2; a ijxj ,(27)

j=l
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4 i

!• i+N

= I aijxp, (28)
j=i+l

N
=x. + aik xi +k, (29)

I k=l

where the latter equation will be used in the derivation because it has the

constraints of the prediction form "built-in", and is more anologous to
Equation (11). The change of sign preceeding the summation is an algebraic
convenience in no way restricting the generality, since the numerical values
of the coefficients are not restricted in sign.

The length of the predictors, N, have been restricted to be a multiple

of 18. This restriction is not necessary, since N could be arbitrary. For
this analysis, however, the computations are more efficient when working
with an integral multiple of sample frames. Also, with the length restricted
in this manner, more consistant prediction results for each symbol of the
transformed message frame. Note that the form of Equation (26) implies that
M = N + 18. Or, stated another way, M = 18 (T + 1) = N + 18, implies that

message sample frames such that N = 18T are used for prediction and for
computation of necessary source statistics.

The optimum rms predictor coefficients are those which minimize

the diagonal elements of the matrix S, Equation (20). With the notation of
Equation (29),

s..i E I[yiYi]

2 N N x=E[x +x. 2;a
i + Zxi 1 ikXi +k + ( I aikXi+k) (30)

k=l k=l

To avoid confusion between the sample convariance matrix, 2, and a different
matrix composed of elements from 1, an alternate notation is introduced for

the expected second moments, (recalling also that the expected mean is zero).

tu, v = ov, u = EtXuXv)Uuv = , vu. (31)

It follows from Equation (30) that,

N N N
s.. =. i, + 2 2 cik Oi, i +k+2 2; 2 aik '20 Oi +a i +k" (32)

k = I k=l 1=1
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The necessary conditions for a minimum over the set of undetermined

coefficients are given by,

as.. N i 18
8i - Oi i+m + ' 'ik i+m,i+k =0' M (33)

im k= I

These conditions specify the 18 N x N systems of linear equations,

(D ipi +Ci =0, i = 1, 2,. .. 18, (34)

or

-Oi+l, i+l Oi+l, i+2 Oi+l, i+N 1i Oi +1, i

Oi+2, i+l Oi+2, i+2 2i Oi+2' i

Oi+3, i+l . ai 3  =- i+3, i '

SOi+N, i+l Oi+N, i+N ."iN OiN ij

for i = 1, 2 ..... 18. The solutions of these systems are the optimum predictor
coefficients. It is apparent from inspection of 4li that for each appropriate i,
Si is a (major diagonal) principle submatrix of the covariance matrix, Z.
Further, all elements of Z, except all, are utilized at one point or another
in the system of Equation (34). For each system, the constant vector, ci, is
a bordering row or column of i superimposed on 2. These and other features
of interest are discussed in more detail in Section III. D, where the numerical
algorithm for solution of Equation (34) is developed.

It is worthwhile to develop the expressions for the expected minimum
variance and expected covariance of the transformed symbols, that is,
subject to the solutions of Equation (34). The general expression for sij is
given by,

N N N N

sij = oilj + 1A•l a i 1i, J +1 + k=l aik j, i+k + =l iik kje Oi+k, j+1

(35)
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Now, for i = j, and using the conditions Equation (33),

N NN

Oi si * + 2k- aik ki,i+k + 1= 1i k--E1 ik Oi+k,i+I

N N
=ii +2 kl a•ik Oi, i+k + 1 Oil -ii, i+1

N
S.ii + krl aik 0i,i+k i=l, 2 .... 18. (36)

This expression gives the value of the theoretical minimum variance of the
transformed variables. Theoretical, in the sense that it is an estimate based

on the sample statistics used in the computation of the optimum predictor
coefficients. This estimate may conveniently be computed along with the
numerical computation of the coefficients, thus giving a value to compare
with the 4i. values, the sample variance of the original variables. An estimate

of the symbol and/or frame entropy will be developed in terms of the
theoretical variances.

For i # j, noting again the symmetry of the Ouv elements, and with the
results of Equation (33), Equation (35) becomes,

N N N

s= Oij + i Oi1 j+1 + k~l aik Oj, i+k + 1I- a {j V- ki, j+1 (37)

N

=ij + k=l aik 0j,i+k

=0

since, with no loss of generality, let j = i + m and the results of Equation (33)
provide the last step. This result verifies the previous statement that the

expected linear correlation between symbols is zero for the transformed
symbol series.

Before considering the numerical problems associated with solving the
system of Equation (34), the battle of subscripts is continued for a develop-
ment paralleling that above, but for a predictor model of diffe.rent form.

C. UNEQUAL LENGTH PREDICTORS (ULP)

In terms of the general linear predictive transformation, Equation (14),

the model to be considered here is denoted by,

y = Bx, (38)

41



I

where, (39)

1 $12 013  . P im

o 1 p2 3  9?4 . . Zm
1]

B= ( .bi.j " "

00 1 01718 A1719 . . 17M

0 0 0 1 91819 9l1820 0 18MJ

As before, and for the same reasons, the correspondence between the
elements, bij, and the constraints of the form of prediction are given by
Equation(39) and the equations,

M
Yi = L=; bixj3 (40)

M

= X i + I OikXk (41)
Sk=i+l

The change in coefficient subscript notation is typical of the change in
emphasis between this model and the previous. With ELP, the emphasis was
placed on utilizing a fixed number of past symbols for prediction. With ULP,
the emphasis is placed on using all symbols from a fixed number of past
frames. Both models have merit as a prediction scheme. The significant
difference in the numerical computation of coefficients motivated the investiga-
tion of both models.

When processing with the ULP model, the number of past symbols
utilized for prediction varics with the ordering of symbols in the frame. For
instance, if no past frames are used, the first symbol of a current frame
must be processed without prediction. The second symbol is processed !
utilizing the known value of the first, etc., untilthe 18 th symbol is processed
with prediction based upon the known first 17 symbol values. This limited

type of prediction is called "across channel" prediction. With speech sources,
across channel prediction would be expected to remove intersymbol influence
characterized by the format structure of voiced sounds. When past frame
values are utilized in the prediction, predictor lengths are increased by a
constant multiple -of 18, and the influence of frame-to-frame (time) correlation

4
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is hopefully removed by the linear approximation. Obviously, the ELP model

uses the same source correlation statistics and includes across channel and
back in time prediction. For long (i. e. , utilizing several past frames)
predictor lenghts the two models would be expected to give about the same
results. This conclusion has been verified.

The derivation of the systems of equations for the rms optimum ULP

coefficients proceeds much the same as that for the ELP model. With the
notation,

v 0 v, u = E(xuxv) = auv = Uvui (42)

the sample covariance expression is,

M M
sij = 0i,. + 2 0 ik Ok,j + . Bj1O1,j +

k=i+l I =j+l

M M
Z 2 k ijl 0 k,1 ' (43)

k=i+l .f =j+l

for i,j = 1, 2. 18. The expression for sii reduces to,

M M M

sii = 0..1 + 2 f. 0 ik 0k, i + 2; Z; ik PiuOk, 1 (44)
k=i+l k=i+l 1=i+l

and the minimization equations are,

s i = 1, . .. , 18

aim = i +1, i + (45)

These conditions imply the systems,

M
Z" Pik em, k + Om, i (46)

k=i+1

for i = 1, 2. 18, andm = i + 1, i +Z ..... M; or, equivalently, the matrix systems,

0i+l, i+l 0i+l, i+Z Oi+1, M 03i i+1 FOi+i,
oi+2,i+1 0i+2,i . i .i+2, i

--- , (47)

NI i+ .
0
m, M', i

3
iM )M, i
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for i ý 1, 2, ..... 18. Again, the source statistics represented by Z are

sufficient to define the optimum predictor coefficients with the rms criterion.

Comparing Equ.-tions (34) and (47), at least one point of similarity is

apparent. For N = M -18 = 18T, the two systems have the same solution for

i = 18. That is, the optimum predictor of length N is the same for each

model. Omitting the restriction that N be a multiple of 18, it is straight

forward to show that all optimum ULP predictors are identical to the equiva-
lent channel predictor in an ELP model of appropriate length.

Any obvious similarity ends there. The more significant comparisons

are made in the framework of the numerical computation algorithm used to

solve the two types of systems. Before proceeding to discuss that algorithm,

we finish the parallel to the analysis of ELP.

introducing the results of Equation (46) into the general sample

covariance estimate for ULP, 'Equation (43) we have

M M M (M
si =Oij + " Pik Ok,j + 2" 0j1Oi,i+ 2; opjt 1 Pik 0 k, I

k=i +1 1=j+l I=j+l lk=i+l

M M M

=ij + " 3ik 0k,j + 1 Oil 01 , i + P f3• {-01 ,I

k=i+l I =j+l I =j+l

M
= .ij + 2 f3ik 0 k,j , = 1,2 ... 18. (48)

k=i+l

Now, for i # j, let j = i + m with no loss of generality. It follows from

Equation (46) that sij = 0, i # j, as with the ELP model. For i = j, the

theoretical expected minimum variance is,
M

s.. = o.. + " Pik k, , i 1,2, .... 18, (49)$
k=i+l

anologous to the ELP result, Equation (36).

D. COMPUTATIONAL ALGORITHMS FOR SOLUTION OF ELP

AND ULP COEFFICIENTS

The computational techniques for solving systems of Equations (34) and

(47) are too closely associated with the merits of each model to be relegated 3
to a reference to the mathematical literature. In fact, the systems representing

the desired solution for the ULP model are the major portion of the little-

known "Escalator Method" 7 for inversion of matrices by a bordering scheme. I
The advantages of this numerical procedure and its match with the ULP

problem are just what is required to efficiently examine the prediction scheme
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for long sequences. A minimum development of this computational algorithm
is given here to indicate the difficulties and importance of computing accurate
predictor coefficients.

The fundamental role in solving linear systems of equations is the

inversion, explicitly or implicitly, of the coefficient matrix. The basis

of any bordering method to accomplish that task is given in terms of the
relations,

A [ an(50)
nn

and,

A-1 A- A-1 u
A--l + n-I n n n-i n-I n

n-l- a -vA- a-A ua nn vn An-i Un nn-v n An- U n
A (51)n

v A 1

n n-l 1

-1
L ann v n An-l u n ann - n n-l un

where A is an n x n matrix partitioned in a bordering manner as indicated
in Equatfon (50). For a symmetric matrix, the row vector, vn, is equal to the
transpose of the column vector un. Equation (51) gives the formula for the
inverse of an n x n matrix in terms of the inverse of the (n - 1) x (n - 1)
major submatrix and the bordering elements. Starting with the inverse of any
order submatrix (even n = 2, the scalar, An_- 1 = all, with An- 1 = i/all)
of a matrix, AN, N, a "march" type order of computation may be used to

Scompute the inverse of higher order matrices, until Ah is finally evaluated.
Only the simple algebraic operations are required at each step in this direct

method using Equation (51).

This bordering method is applied to the solution of a symmetric linear
system of equations in the following manner. Let the system at the kth

stage of representation be written as,

wk Xk -- Fk' (5z)

with the notation,

Ak = [k ak Fn LFk- , and Xk = [ (53)

Suk a f k4
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Writing the solution of Equation (5Z) as,

-i
Xk = Ak Fk, (54)

and incorporating the formula of Equation (51), we have,

y1 A U lu uA f
X k= k-_ k + I, I-I k. k u (55)

Xk=~~~~ []-[: 1k] kkt'kAk-luk A -1 kk

-0 k-1

To simplify the notation, let Ak F X and Aik-i k-i = k-l' an k-1 Uk =ý -Zk-l"

Then,

Xk= + fk - Uk Xk-] 1  (56)Xk= =xk + a kk + Uk Zk-i

Now in the general application, Fk is usually extended at each stage so that
Xkl is the solution of the previous stage, and XN is the desired solution of
the final stage, ANNXN = FN. This leaves the determination of Zk_ 1 as the
major effort at each stage of the march. If Akl is computed by Equation (51)
explicitly and saved at each step, Zkl is formed by simple multiplication.
However, for large systems, there are better ways of computing ZkI at

each stage.

Now, without showing all details, the following remarks are made

concerning the general bordering method and the ULP system of equations
given by Equation (47):

(1) The ULP systems for all MT = 18 (T + 1), T = 0, 1, .... T, may

be combined as one matrix model. That is, if yT denotes the transformed
frame vector at any time which utilizes symbol values from T past frames,

following one has, Equation (57), as a generalized for-n of Equation (38). All
the development of Paragraph C applies directly to this generalized trans-
formation. Each horizontal partitioning of 18 rows is a system as discussed

above. These T + I systems are mereiy "stacked" together to more easily
demonstrate that solutions to all lesser systems are by-products of the
solution of the higher order system. i

4
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T 1
Y /z12 1313 Aim M I

T Ozm xzy 0 1 023 2

2

y 0 0 1 /1819 - 018M x18
18

ST- I~9
y 1 0 . 0 1 01920 "19M 19

I • (57)

y 1 0 n 0 1 J33 6 3 7  .36M 36

Y 0 0 1 O
3
M-17 M-16 PM-17 M XM-I 7

y 0 0 0 1 xML 18JLJL J

(2) By "Flipping"* the system of Equation (57) and systems of the form

of Equation (47), the solutions for the ULP coefficients are given as the Zkl
vectors in a bordering matrix inversion algorithm for the solution of the
longest vector. That is, at each stage of the march, one solution vector (a

row of Equation (57)) is determined. All solution vectors of length less than
N are determined as by-products of the algorithm for solving the Nth order
system. The a-. elements of the typical bordering system illustrated in this

section, correspond to the elements of the "flipped" 2 matrix of previous
sections.

i (3) The theoretical variance of the transformation variable correspond-
ing to a predictor of length k - I is given by the aki. + ukZk I expression at
each stage of the march as given by Equation (56). That is, the theoretical

variance at each stage requires no special computation.

" "Flipping" means an inversion of order of all elements in each row

and column of the matrices.
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(4) This algorithm is extremely stable for computations with high

order systems. Numerical round-off errors do not accumulate, and a con-
venient check on numerical error is easily formed at each stage of the march.

The conclusion to draw from these remarks is summarized here for
clarity. For an ULP model with longest predictor of length, M, an "optimum"
computing algorithm exists for determining the coefficients of that predictor.
The solution for all M - 1 shorter length predictors of similar ULP models

and the theoretical estimates of the minimum variance for all predictors are

computed without extra computation in the process. The algorithm is numeri-
cally stable for large systems even when such systems are "ill-conditioned.
All of these results are achieved at the expense of effort equivalent to solving

for one of the 18 predictors of an M-length ELP model.

As one would assume at this point in the presentation, the ULP model

was used as an initial approach to LLS prediction. The computation of all

predictors indicated in Equation (57) for M = 162 (eight frames back in time),

and the corresponding minimum variance estimates, were computed in about
15 minutes per speaker sample. The analysis of these ULP models

demonstrated that most of the predictable signal structure that could be
removed by LLS prediction was from the across channel and past two or

three frames data. These results compared favorably with less accurate

estimates that had been formed on the basis of analysis of the multiplexed

correlation matrix derived from an approximate M x M Z matrix.

For the models utilizing prediction no more than two frames back (total

of three frambs) in time, the ELP model was used. This model gives more
consistant prediction across an entire frame for the shorter lengths. The 18
separate N x N systems for each speaker sample were solved using the

bordering matrix algorithm. The advantages of the algorithm in this case
were simply the stability and speed of computation. No shorter solution

vector by-products were analyzed although the algorithm would have facilitated
such analysis. For any N = 54, ELP model, all 18 54 x 54 systems can be
solved in about five minutes. These time figures are for Fortran Object

Programs executed within the Executive (FAST) System for the IBM 7074
digital computer. The most significant features pertaining to the first two

blocks in the analysis diagram, Figure 5, have been discussed.

E. ESTIMATION OF APPARENT ENTROPY FROM THEORETICAL

VARIANCE ESTIMATES

As mentioned in Paragraph D, theoretical estimates of the minimum

variance were computed along with the predictor coefficients for each channel.
Any method of attaching significance to these estimates is less than straight

forward. The methodoutlinedhere has proven useful - the pragmatic qualification.

The transformations derived under the ELP and ULP models with the
minimum rms error criterion give predictor coefficients distributed on the

real line. Regardless of the analog or discrete nature of the x symbol values,
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the y symbol values are continuously distributed over some finite range about

the expected zero mean value. It is difficult, and for the most part meaning-
less, to attempt to estimate the entropy of some bounding continuous distribu'-

tion of values over the range of the y values. It is difficult because the
variational extreme problems require numerical, rather than analytical
techniques to specify the entropy of the worst case solutions. Such solutions
are more academic than meaningful, since the manner of channel coding
requires a discrete symbol alphabet; thus, a quantizer is fundamental to
the actual processing design. Much more useful results are possible when
the theoretical entropy estimates are based upon a discrete distribution
obtained by quantization of a gaussian approximation to the unknown
continuous distribution.

The approximate symmetry about the zero mean of the distribution of
transformed symbol values is one of the very desirable features of the
predictive transformations. Furthermore, the symbols from the separate
vocoder channels are expected to be linearly independent. These two
characteristics imply that an entropy estimate based upon a quantized
gaussian approximation to the first order marginal probability distribution
is worthy of consideration. The theoretical variance estimates for each

channel are sufficient to specify a normal probability distribution about the
expected zero mean value. Since the probability associated with a quantiza-
tion interval is a functional evaluated by integration of the continuous distri-

bution over that interval, the effect is a smoothing of errors of approximation.
That is, the probability functional is a better approximation to the unknown
true value than the gaussian distribution is an approximation to the unknown
true distribution at any given point. Further, when the entropy is estimated
from the probabilities associated with the quantization levels, another

smoothing of the same nature takes place. These considerations provide
heuristic support for the quantized-gaussian approximation model.

Figure 7 shows the method of computing interval probability estimates
from the Gaussian approximation. The curve is typical of that for any channel,
or for the combined channel series. An arbitrary number of quantization
intervals may be taken, usually an odd number and symmetric about zero
unless the variance is exceedingly small. The probabilities associated with
the bounded intervals are given by

Yi
P, = f' N(y) dy, (58)

and the intervals at each end are chosen as the infinite tails of the distribution.
Of course, the sum of all these discrete probabilities is unity. Thus, a
probability is associated with the occurance of symbol values at each level
of the quantization alphabe. The average information rate, (entropy), for
symbols distributed as this alphabet is given by

H(y) Z - log p (59)
i49
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Figure 7. Quantized Gaussian Distribution

The procedure just outlined has been shown to give quite accurate
estimates, except for cr much less than unity. As the variance decreases
below unity, the entropy estimate becomes conservative. For such highly
peaked distributions, the gaussian approximation is not accurate. However,
the bias appears to be quite consistant for symmetric distributions, and
could probably be taken into consideration if accurate estimates were
desired for extremely peaked distributions.

Figure 8 is an example plot of entropy versus theoretical variance,
based on a seven level quantized normal distribution such as described
above. Table II is a typical compilation of theoretical estimates of the
minimum variance and approximate entropy for ULP predictors utilizing
zero, one, . . . eight past frames data. The variance estimates were com-
puted during the computation of predictor coefficients. The entropy estimates

were taken from the curve of Figure 8.

The conclusion that removable (predictable) signal structure is primarily

evidenced in the first couple of past frames was reached on the basis of
results similar to that shown in Table II. Data of this type was prepared for
several speaker samples and VAP, V/UV options. Note that (refer to
Paragraph C) results vary with order of multiplexing symbols within frames
for the ULP model. This is not true for the ELP model.

As a final comment on these estimation procedures, it should be noted

again that the effect of quantization noise upon the results cannot be taken
into account in the theoretical derivation of the optimum predictors. One
would expect that this additive noise in the prediction processing would

effect the estimates of reduction in entropy. Further, since the LLS predic-
tion was based upon assumptions of stationary source statistics, there is the

question of how well these theoretical estimates will relate to processing !
of sample data other than that used to accumulate the sample covariance
matrix. The simulation models to be described in Section IV were used to

provide more information relating to these questions. Simulation results
showed that the theoretical estimates, formed as outlined above, were
accuraht to within 5 percent as the worst case.
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SECTION IV

COMPUTER SIMULATION PROCEDURES AND PROCESSING SYSTEM MODELS

A. DESCRIPTION OF SPEECH DATA SAMPLES

Speech data samples for ten male speakers from the AFCRL Speech
Library were used in this investigation. These samples were originally avail-
able in the form of punched paper tapes. Data in this form required special
processing in preparation for utilization with digital computer programs. The
inconvenience and general lack of reliability of this formatting was eliminated
midway through the study when the data became available on magnetic tape.I The magnetic tapes supplied by AFCRL contained data in six-character-per-
word BCD format which is typical for use with IBM computers having internal
binary logic. A program was written to convert these tapes to the five-
character-per-word BCD format necessary for use with internal decimal logic
machines. This conversion process is extremely fast and reliable, requiring

j no special purpose equipment.

There were 17 speech samples available for the ten speakers. These
samples include text A for each speaker, and text B of seven of the ten. Texts
A and B are shown in Figure 9. Text A contains 118 words and required about
35 seconds for recitation. Text B contains 108 words and required slightly
less time for the average recitation. Table III provides the label descriptions
for each sample available to the investigation. These labels were used to
identify samples during simulation and evaluation.

The two texts made it possible to evaluate the ergodic-type assumption
that source statistics accumulated from one message sample of sufficient
length would be representative of statistics for any other message from the
same source ensemble (speaker, in this case). Thus, predictors based on the
statistics of one text were used to process the other, for each of the speakers
on tape one.

I The same speakers used in this study were used as subjects for the 8
second study under this contract, a study of speaker recognition characteristics.
Comparisons were thus possible for processing one sample with predictors
based on another sample, for various subjective estimates of similarity
(or lack of similarity) between the speakers.

A The entire texts (approximately 35 seconds) were processed for the
sample covariance matrix and predictive coding simulations, for each speaker
sample utilized. In most instances, a shorter speech sample would have
sufficed for computation of the covariance matrix with about the same
confidence in the estimates.

5
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TEXT A

"Here is the sixth selection. It is a college lecture

of an aspect of language. I
We tend to think of a language as an accurate,

stable thing, which we can use as we might a screwdriver
or a pencil. It has a function and it will always serve that

function well. Actually, even at a very low level, lan-
guage can become slippery. We are not always sure what
we will get when we order a Chef's Salad in a restaurant.
When I ask for a Mexican Sundae in East Lansing, I get
"a "What's that" look; but I've discovered that if I ask for
"a Tin Roof, I get an object which is indistinguishable
from a Mexican Sundae."

TEXT B

"A rose by any other name is still a rose; but one
does have to know what a rose looks like. If I go to a
nursery man to order a firebush, he probably should ask
me some questions or at least take me into his grounds
and point, saying, "Is that what you want?" "Or that?"
If he doesn't, i'm apt to come home with an Acantha
lalandi instead of a F'olius alatus - hardly the same
thing'

What I wish to do today is illustrate the semantic
changes which occur in language - to make you more
aware of the ambiguities -which can arise when we use
words.

Figure 9. Speech Sample Texts

B. CORE OF PREDICTIVE CODING SIMULATION PROGRAM

The block diagram of a typical predictive coding processing system was
discussed in Section II. Figure 4 is a good reference for the following comments.
The basic digital computer simulation program implements the processing
scheme of that diagram. The output format for the results of the simulation will
be described in this section. This format is independent of the model and
parameters used for any one simulation. The Huffman Coder function and a

description of its operating parameters is discussed in Section IV, paragraph

C. The various options concerning parameter specificatioi. for the simulation
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Table III. Sample Data Speaker Designations

Order of Sample AFCRL Run No. Talker Text

TAPE No. 1

1 2 V0003 P06A

2 6 V0002 P06A

3 4 T0101 P06A

4 9 T0104 P06A

5 12 V0030 PO6A

6 5 V0002 P06B

W 7 7 T0101 P06B

8 8 T0104 P06B

TAPE No. 2

1 13 V0048 P06A

2 15 V0038 P06A

3 16 V0037 P06A

4 19 V0019 P06A

5 23 V0046 P06A

6 26 V0014 P06A

7 14 V0048 P06B

8 17 V0037 P06B

9 18 V0038 P06B

programn are described in Section IV, paragraph D. Four basic models were
simulated for evaluation of the theory and effectiveness of predictive coding
techniques included in this study. These models are described in Section IV,

S paragraph E. Finally, the simulation for analysis of buffer and delay require-
ments for Huffman Coding is described in Section IV, paragraph F. All of the
features described in these sections are further details of the core simulation
described in this section.
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The output format for simulation is illustrated by the representative
example, Tables IV and V. Additional labeling procedures were programmed
for further identification, data, and program evolution referencing during the
study. Simulation using any one of the speech samples required approximately
8 ±2 minutcs computer timne (IBM 7074).

The first output page of the simulation program, Table IV, provides
information related to the apparent entropy of the transformed message. For
each quantization level used in the simulation (number of levels arbitrarily
chosen), the probability of occurrence of symbols from that level is given by
the entry in the distribution table, referenced by the particular channel in
question. In the same vertical alignment, the bottom line gives the frequency
values for the sarnple as a whole; that is, independent of channel distinction.
The former values guide the choice of coders if provided separately for each
channel, while the later values would be the guide for a single coder used to
process the entire symbol sequence.

The column labeled H(DIS) gives the average (channel) source entropy
rate, computed directly from the frequency probabilities accumulated during
simulation. H(NOR) is an estimate of the same quantity. It is based upon an
approximation using probabilities obtained by quantization of values taken
from a normal distribution having the simulation variance of the prediction
errors. This estimate is of the same form as that computed along with the
theoretical determination of optimum predictors, and serves for the compar-
isons. These comparisons substantiate the theory based on the assumption of
normally distributed prediction errors, except when the variance is roughly
less than one, in which case the errors deviate from the assumption of
normality. In these highly desirable instances, H(NOR) is a much too
conservative estimate.

The sums of the channel entropy values are printed below the respective
column values. In the same column alignment, the H(DIS) and H(NOR) values
are computed for the combined channel frequency distribution. These values
are for comparison with the average channel entropy determined by dividing
the sum by 18 (or, the combined channel values may be multiplied by 18 for
comparison with the sum of separate channel values on a frame basis). The
conclusion that a single Huffman Coder is adequate and efficient for predictive
processing is based on comparisons of these average channel and combined
channel entropy values,

The means are self explanatory. The expected values are zero, and any
substantial deviation frGm zero is attributed to severe bimodel skewness of the
original signal distribution. The simulation variance is also self explanatory.
The theoretical variance is really of little interest to the problem at hand, but
is of theoretical interest relative to the limiting case of quantization of con-
tinuous distributions. It is not very meaningful with the quantization widths
used in the applications reported here. In some instances, the values are
completely unrelated to the speech sample. The combined channel means and
variances are computed to augment the combined channelfrequency distribution
data.
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Table V. Computer Simulation Output Format

FREQUENCY DISTRIBUTION OF QUANTIZATION ERROR

RUN NUMBER 4 SPEAKER T0101 TEXT P06AS

NUMBER OF FRAMES USED IN SIMULATION 1354
" NO. GREATER THAN VARIANCE

CH. NO. CRITICAL EPSILON CRI AL ESLN MEAN ABOUTCE
CRITICAL EPSILON ABOUT ZERO!

1 0.500 20 0.003 0.1018

2 0.500 1 0.004 0.0806

3 0.500 4 0.002 0.0849

4 0.500 1 0.007 0.0857

5 0.500 1 -0.007 0.0841

6 0.500 2 0.008 0.0795

7 0.500 2 0.001 0.0873

8 0.500 1 -0.004 0.0833

9 0.500 2 0.003 0.0823

10 0.500 2 -0.006 0.0836

11 0.500 1 0.006 I 0.0849

12 0.500 0 0.008 0.0869

13 0.500 0 0.014 0. 0831

14 0.500 0 0.011 0.0839

15 0.500 0 -0.010 0. 0853

16 0.500 0 0.013 0. 0727

17 0.500 0 -0.005 0.0723

18 0.500 [ 0 0.009 i 0.0679

The second page of simulation output provides informnation related to the
quantization noise present in the prediction process. The critical epsilon and
number greater than critical epsilon values for each channel are for a compar-

ison of the original and reconstructed symbol values at the receiver. For most,

if not all, results included in this report, the width of quantization levels are
normalized to unity, in agreement with the representation of speech sample
data. Thus, referring to the Ei notation of the system diagram, a ei value

exceeding 0. 5 in magnitude would correspond to a discrepancy between the
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original and the reconstructed symbol value, or spectrum amplitude value.
Obviously, with unit quantization widths, the discrepancies are a consequence
of the "clipping" that occurs at the extreme quantization levels. The percent-
age of such occurrences may be compared with the percentage of greatest
magnitude values in the original message, quantized, but not subjected to a
predictive coding transformation. This comparison is part of the overall
system evaluation.

The mean and variance of the quantization noise are also computed for
processing of each channel sequence. These statistics, shown in Table V, are
provided for the interested reader who might, out of conditioned response, be
urgently in need of a signal to noise ratio or dynamic range for the processing
system. All sorts of ratios of averages and averages of ratios may be computed
with the signal (prediction error) and noise (quantization error) variances.
Similar gyrations may be performed with the number and half-width of the
quantization levels.

C. VARIABLE LENGTH CODES- HUFFMAN CODER

At several points it has been implied that the Huffman Coder was a sig-
nificant and integral part of the predictive coding scheme. The description of
this section is to justify that implication.

The development in this report leans heavily on the utilization of entropy
as a measure. The theory and evaluation of predictive coding are centered
around the efficient utilization of a standard channel for which the binary
symbol rate is the single measure of capacity. It has been explained that the
probability distribution for symbols in an arbitrary alphabet is a form of
measuring the uncertainty associated with processing messages composed of
those symbols. Entropy was defined in terms of the probability distribution so
as to represent the average number of binary symbols per message symbol
required to "optimumly" transmit the message through the standard channel.
This implication of optimum refers to a variable length coding scheme derived
from the same probability distribution used to measure the entropy of the
message symbols. Several variable length coding schemes have been evaluated
to see how well they approach the minimum average bit rate measured by
entropy. The various schemes, and estimates or formulas for computing their
efficiency, have been reported in the literature of information theory.

ifHuffman Coding 9 is a -nethod of assigning variable length codes to
theoretically yield the lowest possible average message length (best approxi-
mation to the entropy measure), based upon the probabilities of symbols to be
coded individually in sequence. Note that this sense of optimality excludes
"run-length" coding, where long runs of a symbol value are coded to give
symbol and length of run values. If the probability of any one symbol in the
message alphabet greatly exceeds (say roughly, 0. 70 probable) any other,
run-length or "block" coding is necessary to efficiently transmit messages
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of those symbols. Block coding merely implies that one must group symbols
enough to establish a set of probabilities for the groups that yeild more
efficient codes for the group taken as an entity. Of course, the apparent
entropy is decreased (at least not increased) when measured over the group
probabilities. These concepts are explained in detail in the literature, and
need not be pursued further for the present application. For typical results
of predictive coding, the apparent entropy and code assignments are related
to single symbol statistics, yielding codes 95-99 percent efficient.

Several examples of assigning Huffman Codes are given in the original
publication explaining the method. 9 The assignment scheme is described by
the following four steps:

1. Arrange the symbol probabilities in decreasing order.

2. Add the probabilities of the two lowest ranked symbols, thus
forming a probability for the joint condition. Assign a
zero code bit to one of the symbols, and a one code bit
to the other. The order of assigning (upper or lower)
the separate bits is arbitrary, but must be maintained

as the procedure is repeated.

3. Rearrange the remaining and new joint-condition probabilities,
again in decreasing order.

4. Repeat steps 2 and 3 until only the joint condition of all states
remains. This state should have probability one, except
for round-off error. Note that at each stage of the
process, a "zero" or "one" code bit is assigned the
symbol or group being combined. The variable length
code for each symbol is determined by retracing the
combination path of the probability measure for that
symbol, prefixing at each stage the appropriate (0 or 1)
code. This procedure is illustrated in Figure 10.

The entropy for the symbol probabilities used in Figure 10 and the
average number of bits per message symbol generated by the Huffman Code
are computed in Table VI. The entropy, 2. 073, divided by the average binary
code length, 2. 107, gives an efficiency of 98.3 percent for this example code
assignment. These results are typical for distributions with no single probability
greatly exceeding one-half.

For a variable length code to be efficient at all, it must satisfy the pre-
fix property. This property enables a coded message to be decoded without
ambiguity. It means that the first few bits (prefix) of any code are not identical

to a complete code word of the shorter length. There are other observations 1 0 , 11
that are made concerning properties of variable length codes, but they need not
be considered here. It should be apparent that any device for assigning variable

6
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PROBABILITIES CODE

40.466 .00

0.210 0 01

0.186 0 I 000

0.324

0.057 0 1 0011

0.051 0 0. 1 00100

0.081E0. 017 0 0.030 1011
0.013 1 001011

13827

Figure 10. A Huffman Code Assignment

Table VI. Example Computations for Huffman Code Efficiency

lii -p. log P. pil.

1 .466 .51334 .466

2 .210 .472823 .420

3 .186 .451352 .558

4 .057 .235574 .228

5 .051 .2i8961 .255

6 .017 .099931 .102

6 .013 .081449 .078

1 .000 2.073434 2. 107

61



length codes requires an active memory (buffer) for storing message symbols

or their codes. This buffer is necessary to smooth the talkspurts of variable
lengths to the average mapping time and code length. A certain delay in pro-
cessing of message symbols is inherent with the smoothing process. The buffer
and delay requirements of a practical device depend upon so called high-order
statistics of the message symbol series. That is, the characteristics associated
with run lengths and cyclic orders within the series. Statistics of this type are
difficult to accumulate. Analysis of the characteristics they measure is much
more easily facilitated by computer simulation with the data. A computer
simulation program to assist the analysis of buffer and delay requirements is
described in Section IV, paragraph F.

The basic variable length coding ideas presented in this section are
necessary forý an understanding of the differences in processing models to be
described in Section IV, paragraph E. To repeat, efficient variable length

coding spells the difference between paper profit and the real world of practical
efficient digital communication of speech messages.

D. PARAMETER OPTIONS FOR PREDICTIVE CODING SIMULATION PROGRAM

The options and reasons for options are described in roughly the order of
occurrence in the simulated predictive coding process. An understanding of the
options is neceesary because of their relation to the basic prediction processing
schemes and their effect on the measurements used for evaluation. Further,
some of the options were utilized to perform simulations not included in this
report. This latter point is especially true for the quantizer design parameters.

As the frame data samples are introduced into a simulation sequence, one
of two operations can be performed. In most models, the channel mean amplitude
values were subtracted from the respective channel symbol values for that frame.
This operation accomplishes the result mentioned in Section III, paragraph A.
The expected mean value for all symbols of the resulting input and transformed
output sequences will be zero. This consistance is a matter of convenience to be
preferred over keeping track of variations from expectation for 18 different
channel average values. It provides a common alphabet for values in each vocoder
channel. When processing one speech sample with prediction based on statistics
of another, any significant difference in the statistics will result in a shift of
the channel means away from the expected zero value, thus, usually increasing

the entropy of the combined channel series.

The second operation available at this point is a frame by frame subtraction.
That is, the symbol values of the respective channels from the previous frame
are subtracted from the values of the current frame. Processing schemes using

this operation are referred to as "differenced data. " The expected values of the
differenced symbol series are also zero before and after predictive coding.
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Subtraction of means and differencing are linear operations (of prediction) in
themselves, but are also followed by the predictive coding transformations to
eliminate linear intersymbol influence extending across channels and further
back in time. The simpler operations just described do not lower the apparent
entropy to the extent of predictive coding, if fidelity is preserved.

When simulating with unequal length predictors, the order of multiplexing
effects the results. An option for multiplexing in two orders is available in the
basic program.

Once the data has been multiplexed, a logical decision switch is tested to
accept data on silence-nonsilence (VAP) and voiced/unvoiced (V/UV) options.
The basic processing schemes discussed in the next section rely on these
choices. When VAP = 0, all channel amplitude values are zero for that frame.
The V/UV parameter denotes the character of speech energy in nonsilence
frames. Since the source statistics are different for each classification of
signal structure, prediction schemes based on these differences have been
investigated.

The parameters associated with quantization of the error (transformed)
signal have direct effects on the entropy and noise measures. On a phychacoustic
basis, the preservation of source fidelity would also be affected by coarse
quantization. Both the range and widths of quantization levels may be arbitrarily
chosen with one constraint. The simulation output format of symbol (level) dis-
tribution statistics allows no more than nine levels to be printed on a single
line with the other channel data. No provision for multiple lines per channel
was deemed necessary, consequentially, not programmed.

Although simulation with several speech samples was performed with
many variations in number and width of quantization levels, only the widths
identical to those used in recording the raw data are included in this report.
Without facilities to resynthesize the transformed signal, no means of compar-
ing the source fidelity was available for data processed with arbitrary quantization
widths.

The analysis of buffer and delay characteristics of Huffman Coding
requires transformed message data on magnetic tape for use with a separate
computer program. An option was provided for writing this tape during the
processing simulation. The simulation time is increased slightly by the prep-
aration of these tapes. This transformed message data was further analyzed
for linear independence of message symbols.

The critical epsilon values discussed in Section IV, paragraph B are part
of the optional data. They are equal and constant for each channel in the simu-
lation results included in this report. In the event a basis for comparing simu-
lation results and a subjective fidelity measure is developed in the future, this
option would be helpful. These values were varied with variations in quantization
widths.
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When prediction is based on a V/UV option, so must the logic for
addressing predictor coefficient arrays and reinitialization of the active memory
containing past symbol values. These operations are all based on a single logic.
Of course, initial data input must be assembled in accordance with this processing
model logic.

E. FOUR BASIC PROCESSING SCHEMES

Four basic processing models were used for the evaluation of predictive
coding techniques investigated during this study. Undoubtably there are other
schemes of comparable complexity that were not envisioned in the attempt to
cover so much ground. These models do demonstrate trade-offs in utilization
of recognized source statistical structure. Recall that all processing operations
effect only the spectrum data of the vocoded speech source.

I. Model 1

In several respects, the simplest model is to process every source
symbol of every frame independently of voicing of silence characteristics. For
this model, all source sample data for a message is used to compute the sample
covariance matrix, E. The ELPor ULP are computed from Z and used for
prediction. The greatest reductions in the signal variance are realized for pre-
dictive transformations on this type of source data. Reductions in the variance
by factors from 3 to 15 are common, depending on the channel and length of
predictors. Roughly, the results are weighted considerably by the effect of
sil=ance predicting silence. A model of this type was the first to be investigated
in the study.

Huffman Coding of message processed in this manner requires less
buffer and delay than for the other schemes. The anticipated performance
differences between design and implementation with arbitrary messages are in
a favorable direction. The tendency of silence to predict silence efficiently
should result in a message probability exceeding design probability for the
most likely synmboi, namely, zero prediction error. This result would reduce
the tendency of buffer overflow and similarly reduce the actual information
transmission rate, allowing for more synchronization codes. Any silence
wouldtend to stabilize the prediction accuracy. Conversely, channel noise
could have more of an effect on fidelity of transmission. The pros and cons of
this type have not been studied in detail.

Predictive coding in this manner has been demonstrated consistantly
to reduce the average bit rate to less than two-thirds of the original rate. This
rate is certainly weighted by the percentage of silence in the source message,
but not in a manner that is simple to estimate. Furthermore, in a practical
hardware application, greater than anticipated reduction in average message
bit rate due to increased silence is not easily accomplished with this model.
The importance of this consideration in evidenced in Model 2.
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4 2. Model 2

This model is distinguished from the previous one in the recognition
and processing of silence-nonsilence information. The voice amplitude
parameter (VAP) of each vocoded data frame serves as the decision variable.
When VAP is zero, all spectrum amplitude values are zero for that frame.
Transmission of the VAP value unquestionably accounts (in the most efficient
manner) for the major information in a total message. Remember, the infor-
mation theoretic measure is used and not a subjective ordering of what speech
structure is more major than minor, etc.

The principal concept of this model is that of spreading speech
burst (nonsilence) spectrum information over the silence intervals. The
"information" regarding silence or nonsilence is transmitted independent of
the spectrum data by the VAP value. The hardware implications principly
effect control logic, rather than processing time or component expense.

The hypotheticai graph shown in Figure 11 illustrates the central
idea for this model. The average source information bit rate for predictive
coded speech burst data is represented by the slope of the thick oblique line
segments. The message average information bit rate is represented by the
slope of the dashed line. The horizontal segments during silence intervals
indicate no contribution to the spectrum information being (transmitted)
generated.

As a practical consideration, this processing model is very adaptive
to efficient utilization of limited channel capacity. Contrary to the limitation of
Model 1, the influence of silence in a message is explicitly part of the control
on average bit rate. A warning light, buzzer, or distractive attention-getter
of some type on the vocoder might easily be activated by a sensing connection
to the Huffman Coder buffer. Any pause by the speaker is applied optimumly
toward the alieviation of any tendency to exceed the preset average channel
bit rate.

In a sense, Model 1 has implicitly this, "control by silence."
However, other factors of that model, such as the effect of increased silence
to shift the mean of symbol values, make it very difficult to estimate the
dependence of bit rate on the single parameter, percent silence. Further, a
study of Model 2 provides measures and insight for the speech structure that
is least subject to efficient processing by methods other than predictive coding.
Inginuity may be exerciied for ways of applying the results presented here
concerning speech burst info.rmation bit rates.

Figure 11 is also helpful for describing buffer and delay require-
ments of the Huffman Coder for this scheme. The type of simulation described
in Section IV, paragraph F provides operational data similar to that character-
Sized by the graph. Graphs of this type could also be formed with average
statistics to typify any reasonably deiined 6rUXce ensemble. Recognizing that
there are engineering details that distinguish between hardware and the graph
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Figure 11. Graphical Representation of Model 2

characterization of performance, the graph still provides the most significant
type of information, and in a form to provide good estimates for buffer and

delay implementation.

The light lines drawn parallel to the message average rate may be

used to describe the transmitter-receiver, buffer, and delay interplay. The
lower line may be associated with the actual transmission of data. The upper

line (same rate) may similarly be associated with receiving and decoding of
data. Note that a combined buffer capacity (in bits) equal to the vertical
separation of the two lines is "adequate." The horizontal intercepts are
related to delay in the system necessitated by the variable length codes and
the smoothing of speech burst data over the silence intervals. The intercept

cr is an estimate of the delay at the coder, and Td is an estimate of delay at
the decoder. As the percentage of silence used to determine the transmission

rate increases, so typically do the buffer and delay requirements.

The simulations related to this model utilize the statistics and data

for speech bursts only. The message average bit rate is thus estimated by
multiplying the bit rate during speech bursts by the percentage of speech
bursts time for the message to be processed. In applications where long delays
are acceptable (any one-way channel for instance), the speech burst information
may be spread out over much silence to achieve extremely low message bit rates.
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3. Model 3

Both schemes described so far can be used with the processes of
Models 3 and 4. That is, the models are not mutually exclusive.

The processing with differenced data is labeled Model 3. As

previously mentioned, differencing is a form of nonstatistical linear prediction.
It theoretically doubles the necessary alphabet. It is a restricted form of linear
prediction that does not have the entropy reducing expectation of the linear
statistical prediction using more data from the message past. However, differ-

encing followed by predictive coding utilizes past symbol influence in a manner

different from the other models. For this reason, it was considered in the study
for comparison.

4. Model 4

Model 4 is a scheme for utilizing the voiced and unvoiced structure

of speech burst data. Because the energy of voiced speech is predominantly in
the lower spectrum channels, and voiced speech energy is not, the statistics

of the source vary with this classification of structure.

Separate predictors are used for the voiced and unvoiced structure,

instead of the single predictor for all speech burst data for a channel. Also,

the respective means are subtracted from the input data, rather than the means

for all speech burst data. The logic and complexity of the processing system
are increased substantially by this scheme. The accuracy of prediction increases
aith this scheme, but not in proportion to the increased complexity over the

simpler approaches. This is due primarily to the small precentage of unvoiced
structure, and will be discussed in the analysis of results.

F. HUFFMAN CODING SIMULATION FOR BUFFER AND DELAY ANALYSIS

In this section, the computer simulation program utilized for the
predictive coding source rate analysis is described. Essentially, the program
is used to provide simulation data of the type illustrated by Figure 11. The
interpretation of simulation results is described in Section IV, paragraph E

under the discussion of the Model 2 predictive coding scheme. The program
provides data related to the size of buffer requirements, the coding and decod-
ing delays of message processing, and measures of the average coding rate
and efficiency.

As an option in the basic predictive coding simulation program, the

transformed message may be written in frame groups on magnetic tape for
use in this simulation program. At the time this tape is written, the silence-
nonsilence information is also recorded. For convenience in the output of

simulation results, and for adaptibility to the Models I and 2 processing

schemes, the logic is performed in message cycle groups. A cycle is a speech
burst and its following silence interval. When processing according to Model 1,
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all coding silence intervals are of length zero. The entire message cycle is

considered a coding speech burst. This logic results in a small amount of
redundancy in the output for Model I, but satisfies the analysis requirements

for both models.

Figures 12 and 13 are typical simulation outputs for processing Model 2.
They may serve as illustrations for an explanation of the output format.
Figure 11 is representative of output at the end of each speech cycle.
Figure 12 is an example of the summary output upon completion of the coding
simulation for an entire message. Most of the labeling is self explanatory.
Only a few observations are included here.

The cycle outputs were formated for convenience in plotting the results

for any arbitrary length of the simulated message. The basic time unit, the

sampling rate, of the vocoded source is given on the summary page. A program
identification page (not shown here) was output at the beginning of each simulation.

This page described the Huffman Code assignment scheme used in the simulation,

and additional labeling to describe the speaker and predictive coding simulation
identification. The code assignment scheme was developed by hand in the manner

described in Section IV, paragraph C.

The assumed average bit per second rate during coding speech bursts is

just the entropy of the combined channel statistics that was computed during
the predictive coding simulation. For coding of Model Z data, the assumed
average bit per second rate for the message was computed by multiplying the

former rate by the fraction of nonsilence time for the speech sample. In both
cases, entropy measures are used, and no allowance is made for the less than
perfect efficiency of the Huffman Code assignment. Note from the actual average

rates of simulation given on the summary page, the message average coding
efficiency is computed to be 1. 368 divided by 1. 388 = 0. 986.

The sum of maximum absolute deviations between actual and assumed bit

production was computed during each cycle for both the speech burst and message
performance. This estimate of adequate buffer size was mentioned in Section IV,

paragraph E. The unmentioned output is considered self explanatory.
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A SECTION V

ANALYSIS OF STUDY PROGRAM RESULTS

The following paragraphs present the major accomplishments,

observations, and recommendations concerning the primary objectives of
this study. The conclusions presented are certainly not exhaustive, but
an effort has been made to tabulate sufficient data to enable the reader to
rmake additional observations. Results of over fifty digital computer
predictive coding simulations are presented.

A. TABULATION OF PREDICTIVE CODING SIMULATION DATA

Results of 35 computer simulations are compiled as Table VII. These results
were extracted from the simulation output data for which the format was described

in Section IV. This primary reference table and the further results in Table VIII,
will serve for observations and conclusions pertaining to the majority of predictive

coding models of interest. It is believed that sufficient data is presented to enable

the reader to verify and augment the comments on the analysis.

Table VII contains representative statistics for 17 speech data/predictor
data combinations as described in the left-hand column. Note that items

7 and 15 are identical, the repetition is for convenience in grouping relevant
data.

The 21 statistics are identified by the column headings, most of which

are self explanatory. The "Avg. Chan. H" descriptor refers to the average

channel symbol entropy values for each channel. The "Comb. Chan H"
descriptor refers to the symbol entropy computed from the combined channel
simulation statistics. Models I and 2 are the "all data" and "speech burst

data" processing schemes described in Section IV. The entropy values for
the Model 2 scheme are computed as the product of the speech burst entropy
and the fraction of speech burst data in the text sample. The compression
factors given in columns 20 and 21 are ratios of the simulation entropy and
the 3 bit/symbol value representing the Hrnmx for eight-level quantization of
the originaldata. For data represented in this table with seven-level quantiza-I tion, the average amount of "clipping" (number exceeding critical epsilon)
was in all cases less than 2 percent, and more typically near 1/2 percent.

A more complete coverage of the dependence upon length and number
of quantization levels is presented in the data of Table VIII, for a single
speaker. Note that results of simulation with differenced data (model 3)

I are included for comparison. The "rmessage percent clipping values" were
computed by summing the total "clips" over all channels and dividing by the

total number of message symbols. The channel values were computed
similarly, using measures associated with a single channel.
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Table IX provides entropy measures as described by the column

headings. The raw data was quantized with eight levels. The low entropy of
the raw data for the top four channels results from voiced data having little
or no energy in these channels. The estimated entropy values were corn-
puted along with computation of predictor coefficients. The quantized-normal
approximatiorL described in Section III was used for each expected variance
associated with the predictive transformation. Combined channel values for I|
the simulation entropy are included for comparison. The conservative bias
of the theoretical estimates for small variances is illustrated particularly
in the high channels. fj

Note how the effectiveness of prediction varies over the channels . The
channels with poorest prediction effectiveness vary somewhat with speakers
as do the formant structure characteristics to which it is attributed. A
similar, but less pronounced, variation is apparent in the raw data. The
higher entropy values result from a "flatter" amplitude probability distribu-

tion, conceivably a result of time-varying formant migration across the
channel, or channels, in question. The combined channel symbol distributions
for three types of data are illustrated in Figure 14. These distributions are
provided with their entropy values as representative of those of similar
classification. The raw data symbol levels are shown out of order inFigure 14a
to correspond more closely with the distributions having zero mean. The
distribution of prediction errors, Figure 14b, has the symmetry and weight-
ing typical of normally distributed and quantized values. As has been observed
with most differenced data, the distribution in Figure 14 c is very symmetric
and has a large zero level probability but is not weighted with gaussian
envelope. The entropy values are typical of each classification.

Figures 15 through 18 illustrate the distributions of symbol values over
each vocoder channel. The shape (distribution) of the graphs for the raw data
shown inFigures 15 through 17, will vary over speaker classifications. The
prediction error distributions do not vary significantly in this manner. In any
event, these examples are presented solely for illustration. From the first
three, the difference in the voiced and unvoiced distribution characteristics
are vividly shown. Based upon the speaker recognition study8 , speaker TO 101
was judged on a subjective basis to have a generally "dull, " "low, " and
"resting" voice. A speaker (such as V0019) with a generally "intense, " "high,
and "busy" voice has considerably different distributions across the channels.

Finally, for the graphical and tabulated illustrations from prediction

simulations, Figure 19 is a plot of the message average entropy measures
relative to the percent silence for most of the Model 2 simulation data. The
graph is self explanatory, but will be disucssed in the following paragraph.
The hybrid simulations are easy to pick out of Table VII as they result from

simulation with one speaker using predictors derived from the statistical

characteristics of another.
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1 . 09 
2 . 1 0

3. V 00O8-A 
345 0.12 0.23 0.29 0.37 1.82 1.90 2.00 2. 09 2.0

5 1. V0002-B 
31 26 032 0. 0 0 50.4 

2.00 
4 . 10

(TO 
101-A 

Pred)10. T0101-A 
41 34 0.13 0.14 0.26 0.33 1.77 1.85 1.96 2.07 5 .00

11. TO0104-B 29 230 0.082 0.14 0.28 0. 37 1.93 2.03

12. T0101-B 29 230 0.082 0.14 0.28 0.37 18 .0 2.00 2.109 20(TO104-A 

Pred)

12. T0104-B 
29 23 4 0.08 0. 14 0.28 0. 37 

2.00 2. 10

13. V0048-A 42 27 2.00 2.07

14. V0048-B 42 30 2.04 2.12ZI (V0048-A Pred)

15. TOIO1-A 41 34 0.13 0.24 0.26 0.33 1.77 1.85 1.96 2.07 2.00
(Same as No. 7)

16. T0101-A 41 34 0.13 0.24 0.26 0.33 2. 12 2.28
(V0019-A Pred)

17. V0019-A 47 33 2.06 2.15 2.08

18. V0019-A 47 33 2.20 2. 30 2.29

4 
(TO I101-A Pred)



Table VII. Results of Computer Simulations

>~ >r > >

-0 0)

00 o o

7104 1 A 17 , U 0
1.9 . U O0 . 0 1. O. 56

'3) u' Ol 2 102063 1.5 166 .6 1.7 0 ,53 0 53

U A A

0 . .0 .1 0 2. 2 09 .0 . 1. . .6 0.0. 00."-33 0 > .0 >30 > > 0 0 1 00 0.
U5 U 0 I 0 1 -.4 U U 0 0.( 0.493

6 710 11 12 13 14 1.R 1.37 17 18 19 20 21

7. 37 I.9 .4i 7 I.4 .47 0

.79 1.99 2.07 2.00 2.08 1.07 1.76 1.70 1.77 0.586 0.566

.47 ..0 1 2.10 2.06 2. 16 1.59 1.66 1.63 1.71 0.553 0.530

.33 1.90 1.99 Z.04 2.14 2.06 2.16 2.09 2.20 1.48 1.56 1.52 1.61 0.78 0.520 0.493

1.81 1.88

.33 2.05 2. 13 2.07 .15 1.50 1.55 0.516 0.500

.45 2.00 2.10 1.48 1.55 0.516 0.493

.45 2.05 2. 16 1.52 1.60 0.533 0.507

33 1.77 1.85 1.96 2.07 Z. 00 2. 09 2.05 2.14 1. 31 1. 37 1. 35 1.41 0.74 0.457 0.436

37 1.95 2.04 1.37 1.43 0.477 0.456

37 1.82 1.90 2.00 2.09 2.01 2. 12 1.40 1.46 0.77 0.486 0.466

35 1.88 1.98 1.96 2.05 2.01 2.12z 1. 51 1. 58 1. 55 1. 63 0.80 0. 526 0.504

.37 1.93 2.03 1.49 1. 56 0.520 0.496

1. 37 2. 00 2. 10 1.54 1.61 0. 536 0.514

2.00 2.07 1.46 1. 51 0.503 0.486

2.04 2. 12 1.43 1.48 0.494 0.476

I.33 1.77 1.85 1.96 2.07 2.00 2.09 2.05 2. 14 1. 31 1. 37 1. 35 1.41 0.74 0.457 0.436

33 2. 12 2. 28 1.40 1. 50 0. 500 0.467

2. 06 2. 15 2.08 2. 18 1. 38 1.44 0.480 0.460

2.20 2. 30 2.29 2.42 1.47 1.5 0.514 0.490

Avg. 1 0.e490
./ (No. 15 excluded)



Table VIII. Predictive Coding Simulation Statistics

Text Speech Data

Sample 4T0101 P06A

Speech Burst Data Differenced Speech Burst Data

'-,,ength f length
18 36 54 0 18 36

level Ilevel

5 2.03 1.98 1.98 5 1.94 1.97 1.99

7 2. 14 2.07 2.07 7 2. 14 2. 11 2. 11

9 2 .6 2.09_09 9 2.22 2. 16 2. 15

Combined Channel Apparent Entropy

eng t length
18 36 54 0 18 36

leve ___________level1 _________

5 4. 55 3. 41 3. 34 5 8.61 5. 31 4.82

7 0.99 0.80 0.70 7 4.48 1.68 1.42

9 0.21 0.16 0.15 9 12.25 0.52 0.40

Message Total Percent Clipping

S-ength
ev*le 18 36 54 I 0 18 36
level -- , _________level I

5 9.90 8. 58 8. 35 5 12.91 9. 66 9.37

7 3.777 3. 40 2.88 7 8.56 5. 17 4.87

9 1.55 1.25 1.48 ;L_ 9 5.02 2.36 2.14

Channel Maximum Percent Clipping
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Table IX. Frame Entropy Comparisons J
Raw Data, Theoretical Estimates, and Simulation Results

Seven-Level Quantization-Speech Burst Data-Sample 4T0101 P06A

18 ELP 36 ELP 54 ELP J
Chan. Raw Data Estimate Simulation Estimate Simulation Estimate Simulation

1 2.886 2.54 2.45 2.52 2.41 2.52 2.42

2 2.745 2.22 2.26 2.04 2.11 2.03 2.11

3 2.887 2.40 2. 39 2. 31 2. 30 2. 30 2.24

4 2.739 2.04 2.06 1.93 1.95 1.92 1.97

5 2.714 2.11 2.10 2.07 2.08 2 05 2.06

6 2.372 2. 11 1.99 2.05 1.98 2.05 1.96

7 2.611 2. 26 2. 22 2. 19 2. 13 2. 17 2.20

8 2.817 2.41 2- 41 2. 33 2. 33 2. 32 2. 35

9 2. 828 2.42 2. 44 2. 36 2. 37 2. 35 2. 38

10 2.830 2.39 2.41 2.31 2.33 2.28 2.31

11 2.817 2.43 2.43 2.35 2.36 2.33 2.34

12 2.760 2. 15 2. 17 2.03 2.07 2.03 2.09

13 2.835 2. 10 2. 13 2.01 2.07 1.99 2.06

14 2.571 2.16 2.16 2.01 2.01 2.00 2.02

15 1.080 2.09 1.99 2.06 1. 94 2.04 1. 93

16 0.962 1. 30 1.07 1.25 1.08 1.24 1.09

17 0.969 1. 19 1.05 1. 15 1.01 1. 14 1.00

18 0.463 1.42 1.10 1. 30 1.03 1. 28 1.08

41. 879 37. 77 36.83 36. 27 35. 57 36.04 35. 66

Combined Channel

46. 879 38. 52 37. 26 37. 26
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I B. SIMULATION RESULTS OF HUFFMAN CODER BUFFER
AND DELAY ANALYSIS

The computer simulation program to provide data for analysis ofI coder buffer and delay requirements was described in Section IV. Very
little data was processed for this analysis because of the dependence upon
type of speech sample. Each text sample provided around a 100 speech/
silence cycles, and the summary of the data analysis is very much controlled
by the percent and the maximum length of silence intervals. The tables in
Section IV provide an illustration of how the data was summarized, and the
worst-case message buffer and delay requirements.

The form of the estimates described in Section IV for Model 2
processing inmlied that the buffer and delay are related by

d=1 ,(60)

f where d is the total delay in coding and decoding in seconds, B is the
"adequate" buffer estimate in bits, and m is the message average trans-
mission rate in bits per second. For a 50-frame-per-second sampling rate,

j this equation may be written

B
d - , (61)S~900 r

where r is the message average bit/symbol rate. The message "adequate"
buffer size indicated by the summary of Figure 13 would imply a coding-

decoding delay of approximately 2. 27 seconds, obviously unsatisfactory for
some applications. Note, however, that this delay and the associated (approx.
3000 bits) buffer are the estimates for Model 2 processing of the sample most
frequently illustrated in the simulation results.

The observed worst-case requirements for essentially real-time burst
coding* would require a delay of about 0. 085 second with an adequate buffer
size of 160 bits. These values are more typical of general variable length
coding requirements, where as the larger values are a direct consequence of
smoothing the speech burst data over the silence intervals to obtain the lower
average bit rates.

For any of the processing models, a typical bit/symbol measure is
available (allowing for efficiency of variable length code assignment) from the
entropy estimation or simulation procedures; the delay-buffer requirements$ are in general related linearly similar to Equation (61).

It may further be observed that whereas large percent silence implies
low Model 2 bit rates, this same silence index may spell doom for the low

bit rate efficiency when the associated time delays are not admissable. Of

course, the speech burst bit rate is an upper bound in the sense that one could

*The speech is not spread over the silence intervals.
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I
always transmit at this rate-not utilizing the silence to send at a lower rate. I
In this instance the lower buffer/delay estimates mentioned above are
applicable. The adaptability of the Model 2 processing scheme to meet
various system requirements is a primary virtue. (ICLL

C. DISCUSSION OF SIMULATION RESULTS AND SUMMARY CONCLUSIONS

The data presented in the major portion of the report and the tabulation
of data in this section are summarized by the following conclusions.

(1) The implications of early analysis and unequal length predictors has

been verified by the simulation results presented for comparison in rows 3
and 4 of Table VII and Table VIII. The major, if not total, bit rate reduction
through linear time invariant predictive coding is achieved with prediction no
more than 2 of 3 frames across channel and back in time. Further, the
accuracy of the entropy estimates computed from source statistics and the
predictor algorithm have been consistantly verified for all prediction models.
Table IX illustrates the degree of approximation. This latter observation
should apply toward similar analysis of other type source data.

(2) The Model I processing scheme has been demonstrated for matched,
hybrid, and difference data simulations to achieve a compression factor of
0. 6 to 0.65. This model was not pursued extensively because of the over-
lapping implications of Model 2, and the restriction upon extrapolation of
results to speech sources of other than text characteristics. Model 1 data is
tabulated in columns 7 and 8 of Table VII.

(3) The most extensive predictive cooing (linear time invariant)

analysis has been directed toward the speech burst information rates and
influencing effects. This analysis is applicable to the Model 2 processing
scheme (which provides the lower bounds on bit rates achieved with simula-
tion) and is thought to be the most readily extendable to other types of source
data if delay/buffer requirements are admissible. Figure 19 provides empirical
evidence of the "control of silence" of Model Z bit rates, independent of
speaker classification. Columns 15 through 18, 21 and 22 of Table VII contain
the Model 2 statistics.

(4) The uniformity of simulation results for processing with the four
hybrid data samples is a significant verification of the assumed ensemble
properties of stationarity and ergodicity. These simulation statistics are
represented by rows (3, 6), (7,9), (10, 12) and (13, 14) of Table VII. The
predictive coding transformation remained stable with hybrid simulations

based upon the subjective classification of "most different" speakers. The
entropy statistics for these simulations are tabulated in rows 16 and 18 for •
comparison with the separate samples, rows 15 and 17, and all other for
that matter. The quantization noise and clipping statistics for these "worst
case" simulations were comparable with all others with the single exception i
of additional clipping in tne simulation of row 18. This excessive clipping in
one channel was obviously due to the two extremes in "high" (V0019) and "low"
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(TO101) voice classifications, and occured with about 8. 5 percent of the

channel values in one channel.

(5) The simulation results clearly provide sufficient data for a com-
parison of cost versus efficiency for variable length coding with one or
multiple channel coders. It kppears that the savings with multiple coders
could hardly be worth the expense and complexity compared with the
efficiency and uniformity of the combined channel statistics for any givenf model.

(6) The only major compilation of differenced data statistics are
presented with the speech burst statistics for one speaker in Table VIII.
Differencing is by far the simplest, most uniform over speakers and
models, and least expensive manner of extracting the mean symbol values.
This operation alone is shown to significantly reduce the entropy, with

i somewhat more "clipping" than a prediction scheme yielding the same entropy.
Results of differenced data simulation similar to those presented were
observed for a few other speech samples with scattered length and level
variations. Figure 14c is a vivid illustration of the effect of differencing
without prediction. However, because the tails of the distribution do not
decrease as is the case with statistical prediction, it is indicative that this
scheme requires psychoacoustic evaluation more than any other It is
possible that an evaluation of this type has been performed with a "delta
modulation" scheme at some other laboratory. The similarity of processing
is obvious, but results of experimentation, if any, of this type with vocoded
speech are not known.

(7) The other intent of compiling the data of Table VIII is to show
typical entropy and clipping statistics versus predictor length and number of
quantization levels. Note what appears to be a threshold of instability in the
processing of five level quantized differenced data. A similar result was
observed with seven-level simulation with another speaker, but not in time
to test stability of either samples at lower levels of quantization. As was5 discussed in the fidelity considerations of Section II, excessive clipping can
result in randomness or instability of the predictions, and a total loss of
system fidelity.

In general, the other variations with length and quantization levels are
obvious. The reduction in entropy with increased predictor length is small.
The clipping excursions are reduced considerably by increasing the number.
of quantization levels with only a small increase in entropy. Note again that
the statistical prediction scheme was stable at all ranges of quantization
investigated.

(8) The histogram representation of raw and transformed symbol
data provides visual evidence of the "peaking" as a result of prediction. The
difficult to assess fidelity considerations discussed in Section II should be
evaluated with this effect for reference. Note that reduction of the raw data
of Figure 14 a to seven-level quantization would result in about a 3. 5 percent
"clipping" penalty; but that the seven-level prediction error data of Table VIII
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suffered only a fraction of 1 percent clipping as the worst case, The variation
of fidelity and entropy with predictor length and number of quantization levels
may only be stated conclusively through psychoacoustic evaluation.

(9) The theoretical and simulation data presented for the linear time-

invariant predictor models investigated in this study show an exceedingly
high degree of consistancy. In this respect the approach is very suggestive of
practical application.

The insight provided by this investigation may help to explain the limited
speech burst compressions and is a basis for recommended future study which
is more fully discussed below. The simulation results for the various speech
burst models consistantly gave a compression factor of about 66 percent-
plus or minus a few hundredths of a bit. These results suggest a rather
obstinate lower bound for the fundamental approaches investigated. The
compression factors approaching one-half for Model 2 processing must be
appraised in conjunction with the not to be denied buffer and (especially) delay
effects on a total system.

(10) The major dissapointment, and subsequential gap in the investiga-

tive study, was the unsuccessful attempt to alter the basic digital computer
program to simulate the voiced/unvoiced option of Model 4. Although the

options for this model and the statistical justification for its conception were
discussed earlier, the multitude of other programming and data handling
demands of the study prohibited complete development of this option. However,
because the validity of the entropy measures estimated from theoretically
minimum variance statistics has been adequately verified, the following

estimates are presented to partially fill the gap.

For speech sample 6V0002P06A the ULP and ELP estimates of voiced

entropy were 32. 35 and 32. 325 bits/frame respectively. The unvoiced
estimates were 26. 62 and 25. 376 bits/frame respectively. For this sample
there were 982 voiced frames and 245 unvoiced frames for a total of 1227
speech burst frames. Summing the properly weighted entropy measures for
the sample gives 1. 73 bits/symbol for the ULP and 1. 72 bits/symbol for the
ELP. Note that these estimates would compare with the "Avg. Chan H"

values given in Table VII.

The most recent check-out run with the Model 4 simulation looks

correct, but the trial solution has not been run. The recent run measured
the "Avg. Chan H" from 54 ELP, seven-level simulation with 4 T0101P064
data to be 1. 85. The "Comb. Chan H" for the sample was 2. 00, both values

in bits/symbol. The quantization noise and other statistics appear equivalent
to the usual seven-level 54 ELP results.

D. RECOMMENDATIONS FOR FUTURE WORK

A number of questions which appear deserving of further study are
discussed in this paragraph. These questions concern both additional results

needed to apply the coding techniques discussed above in practical systems
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and several possible extensions of these techniques into more sophisticated
methods.

1. Direct Refinements

First we shall discuss several points having to do with the
development of our basic techniques for applications. Generally, these
considerations are fairly straightforward and only short comments are
offered.

Even if one intends to use one of the prediction schemes without

modifications, it probably goes without saying that the whole relevant

analysis should be repeated using speech samples which are as nearly typical
of the speech to be encountered in normal operation. In this connection,
careful attention should be directed to obtaining a realistic speech-to-silence
ratio when speech samples are being acquired for design purposes. Also,
it is recommended that in recording this sample data a method permitting

accurate reproduction be used if possible. Although the effects of quantiza-
tion noise were not distinguished separate of other system parameters, it
is still considered to be an important effect.

The predictors analyzed have each been designed from statistics
taken from a single talker's voice. Consequently, the results are actually of
direct applicability only to systems which are "adaptive" in some way to

individual voices, c7 voice classifications. Since a relatively small number
of parameters is required to characterize a specific code, it would be a
simple matter to have system users insert their particular parameters into
the system before a conversation is begun. Of course, this may prove to

be an undesirable operational feature, in which case the possibility of a

genuinely adaptive system can be entertained. While it does not appear
feasible to incorporate the entire measurement and synthesis procedure
used in this study in an operational system, there is a very good chance
that a fairly simple procedure can be made to alter a standard initial
predictor to suit a given talker's voice. Probably, general procedures
suited to this purpose will be reported on in literature in the near future.

A completely straightforward system in which the same predictor

is used for all voices would eliminate this concern. Although we did not
directly synthesize and evaluate such a system, the results that were obtained
by processing one talker's voice with another talker's predictors and by other
scrambled combinations seem to indicate a surprisingly high degree of

uniformity between talkers from a coding viewpoint. Tentatively, it appears
that fixed nonadaptive coding may be a much more valuable method that
originally expected. Consequently, a direct evaluation of this possibility
should be made before adaptive schemes are resorted to.

In applications where implimentation economy is a major concern,
several possibilities for simplification of the basic models should be investi-

gated. In this study no attempt was made to single out particular points as
being more or less useful than others for prediction purposes. Although it is
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very dangerous to try to make conclusions of this type, there is some I
indication that a few points "contribute" most to the prediction, and all others
have roughly equivalent weight. At any rate, it does seem that a deliberate
search for the optimum selection of prediction points should be undertaken if I
equipment cost is a vital concern. As an alternate and perhaps more easily
exploited approach, one can use the basic techniques to describe earlier
to look for useful arrangements of a smaller number of predictors than the
18 used uniformly in this study.

In those codes where the VAP or V/UV items are used for logical
switching, a problem arises concerning the transient behaviour of the
prediction loop. To minimize the gyrations of the error signal when a predic-
tor is first "turned on", the shift register should be initially loaded with
appropriate values. In our simulations a simple scheme was quickly found
which adequately served the requirements of the study. It is not necessarily
the best possible scheme, and some effort should be directed to the problem
in any developmental program.

No careful consideration has been given to the effects of channel
errors which are inevitable in practical systems. Ordinarily these errors
pose a severe problem in predictive coding; however, in the case of speech,
the problem should be less troublesome, since through appropriate logic the
frequent occurence of silent intervals can be utilized to restore the receiver
shift register to initialization contents. Whether or not such a provision is
adequate should be checked.

2. Alleviation of the System Delay Problem

As was noted earlier, spreading speech burst data over ensuing
silent intervals requires that the speech message suffer a net delay in passing
through the transmitter and receiver buffers. As has also been noted, this
ddlay can easily approach the point where it is objectionable to conversing
parties. In a very real sense the tradeoff between average bit rate and net
delay is fundamental and unavoidable as long as one considers simple duplex
systems. If the total system delay is to be kept small, burst data must be
transmitted at a relatively high rate. If this is done, then the silent intervals
are wasted in so far as the speech communications are concerned. Clearly
if a channel is to be utilized efficiently when low-delay coding is employed,
then the silent intervals must be used to transmit data from some second
information source. In Part III of the report prepared on this contract12 ,
the use of silent intervals for teletype data transmission is discussed. *
Another possibility for efficiently utilizing the silent intervals should also be
investigated. If the channel in question is not a single voice channel but is
a higher capacity channel servicing several conversations, then straight-
forward interleaving of speech burst data might lead to efficient channel
utilization without severe delays in the individual conversations. Whether

*Results of this study disclosed that as many as 38, 75 wpm teleprinters
can be multiplexed into the silence frames of a full duplex vocoded speech
system.
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or not such a system is practical, meets a need, and solves the problem

should be investigated.

3. Integration of the Quantization and Coding Functions

Throughout this report a major concern has been the possible

effects on system fidelity resulting from relocating the quantization process.

On the whole, we have tried to keep the net or effective quantization process
as nearly unchanged as possible, so that the compression achieved could be

attributed to the coding process per se without qualifications. Of course, the
significance of the clipping effect discussed earlier still needs to be deter-

mined subjectively. Above and beyond this concern however, there are

several other questions and possibilities associated with the relocated

quantization process; all in all it seems that a new "round" of subjective

experiments is in order.

Assuming that the original purpose of leaving system fidelity

unchanged.has been accomplished, we can now broaden our deliberations.

In particular it can be asked whether or not the quantization procedure most

appropriate for the original input signals is actually the best one to apply on

the error signals resulting from prediction. In particular, the merits of
nonuniform quantization inter.al widths should be reinvestigated; experience
with other signals, and video signals in particular, has shown that a nonuniform

quantization of error signals frequently yields the best subjectively deter-
mined fidelity, even though uniform quantization is best in the absence of
prediction. Generally one finds that the size of the intervals should increase

with the magnitude of the error signal.

Besides the possibility of an improvement in fidelity, there is

another motivation for considering a modification of this type to the original

quantization scheme. A procedure which gathers levels near the zero-error

point and spreads levels for large error values tends to equalize (up to a
point) the occurence probabilities of the various error symbols. In particular,

such a scheme can be deliberately designed to make the probability of an

error signal value falling in a given interval the same for all intervals. This

of course eliminates the need for variable length code assignments and mayJ have advantages in applications where cost is a paramount concern.

The rather unattractive buffer sizes needed to spread speech burst

information over silent intervals suggests another modification to the quantiza-I tion procedure. Probably, it is the relatively infrequent occurence of several
long speech bursts combined with short silent intervals which determines the

memory sizes found in the study. To cut down on these peak loads imposed

on the buffer system, one might gradually increase the quantizer interval
widths as the buffer fills up. In this way a controlled fidelity degradation can

be substituted for the catastrophic breakdown otherwise associated with buffer

saturation. In such a scheme, the fidelity of reproduction for each input
symbol is established at the instant it is quantized; this implies that the control

j system must act without specific knowledge of the durations of following speech
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and silent intervals. However, because the data, after coding, usually sits idly I
in the buffer for some time before it is actually transmitted, one could place

a part of the buffer ahead of the coder-quantizer combinations, so that the

latter is operating on a backlog of input data. A configuration such as this
probably could achieve much better regulation of a variable-fidelity

quantization process. If indeed peak loads arrive at the buffer very

infrequently, then perhaps the overall system delay could be substantially
reduced in exchange for infrequent temporary degradations of fidelity.

Although it does not particularly imply a need for further studies,

there is another reason for considering variable-fidelity quantization.
Different talkers will generally have different average entropies measured
with respect to a standard fidelity criterion. For adjusting each talker's

bit rate to that of a standard fixed rate channel, expansion or contraction of
the quantization intervals could be used.

4. Extension of the Linear Predictor Model

Although simplicity of implementation is the only advantage of

linear prediction methods explicitly discussed in the forgoing, there are of
course more positive reasons for having chosen this basic model for initial
study. These other motiviations generally derive from considerations of the

usual source-filter model of the vocal apparatus and the nature of the decom-
position of speech waveforms affected by vocoders. These same considera-

tions, however, also serve to point out the inherent limitations of the relatively
simple code models studies to date and to suggest the embellishments one
should add to these basic models in order to obtain greater compression
factors.

When one examines sufficiently short segments of a sonogram

(on the order of 0. 1 to 0. 2 second, say) it is immediately apparent that there
is a high degree of "organization" in the source process. Of course, when
larger segments are examined, it is also apparent that this "organization"
is rather short-lived; that is to say, the exact nature of the source process

clearly changes considerably over successive short intervals of time. If
the term has any meaning at all, one can certainly call vocoded spectrum
data a "quasi- stationary" process.

The simplest predictor mentioned in this report is one in which the

same predictor is used on the entire multiplexed input data stream. This
scheme was of course abandoned immediately after its mention in recognition
of the fact that the statistics of the multiplexed sequence changed with time-
specifically the change cyclicly with a period of 18 symbols. Next, the

differencing feature was substituted for subtraction of a fixed mean value I
largely in recognition of the fact that means, figured on a short term basis,

changed with time. Similarly the use of predictors operating on nonsilence
data only and the use of separate predictors for voiced and unvoiced data
both represent attempts to capitalize on more of the "quasi-stationary"
characteristics contraining the source process. Certainly the results have
shown the merit of even these particularly simple steps.
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If the redundancy associated with short term structure is to be

removed, then the coding process itself must change rapidly in accordance

with the changes in the source process. Obviously the coders we have

analyzed do not have this sort of capability except in the simplest of senses;

they are sensitive to, or effective against, only that redundancy apparent in

statistics obtained through averages taken over very long time intervals.

To obtain more compression from linear predictors, means must be developed

to introduce more short-term time variations of the predictors in direct con-

cert with those of the source.

Useful extensions of this type must come about largely through

sheer inventiveness because theoretical approaches certainly will be of little

help in the conceptional stages. The only readily apparent sources of guidance

are the various established models of the speech production process. For the

present at least, it 'seems that any sensible approach to time varying predic-

tors must depend heavily upon the source descriptions provided by these

models. In fact, it may even be that the predictors should directly implement

one or more of the operations contained in the various models.

At one extreme one can start with the simple "first-order" phone -

mic model, which describes speech as a sequence of discrete, disjoint, and

largely independent sounds following one after the other in time. Correspond-

ing to this model one can consider a coding system incorporating a battery or
library of predictors in which each one is tailored to handle a particular

sound or limited class of sounds, and from, which, individual predictors

could be selected for use depending upon the particular speech sound present

at the input. On the other hand, even though the motivation behind this sort

of operation derives from a drastically oversimplified source model, it

certainly seems reasonable that something at least roughly resembling a

phonemic breakdown would be appropriate if very large compression is

to be achieved. Since the motivation for this system would seem to imply

that very complicated decision rules must be used, we should point out
that it is by no means essential to have the selection decisions resemble a
"conventional" segmentation or phonemic classification in any way whatsoever.

The decision rules can be made very simple and a potentially useful system
is still possible. Such a system is really a straightforward extension of the

voicing option scheme analyzed above, except that now the selection decisions
would be based upon the spectrum data itself rather than on nonspectrum

data.

To illustrate this type of system with a very simple case, suppose

the entire bank of predictors were operated simulataneously. To determine
which predictor output to use in coding a given symbol or frame, the error

signals themselves could be examined to see which predictor was giving the

best results at that time. In some arrangements it would be necessary to
send "keying" information to the receiver to indicate which predictor was

used. On the other hand, if only the error signals generated on past frames
were used in the selection decision, then the decision could be duplicated at

the receiver and no auxilliary keying information need be transmitted.
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Thus, except for a little logic, this particular system is made more complicated
than those analyzed in our study only through the additional predictors required. I

The substantial shortcomings of simple phonemic models in describing
connected speech do serve to thoroughly complicate the design and evaluation of
multipredictor schemes. Certainly at this time one can only engage in specuiation

as to the probable effectiveness of such schemes. In this connection, however, it

should be pointed out that the spectrum pattern data now being collected and ana- I
lyz ed at AFCRL should be of direct and ine stimable value to any future studies on
this subject. If a segmentation and classification of speech sounds can be affected

using this data and technique, then at least a first attempt at synthe sizing a multipre- !
dictor system car. be made using the same method employed in the pre sent study.

At the other extreme are the source models which describe speech

in terms of its formant structure. The "organization" of speech spectrum data into
a few slowly migrating formants unquestionably represents the most important
single source constraint from a general predictive coding view-point. Presumably
its existance implies the existence of considerable redundancy in the vocoder repre -
sentation of spectrum information. On the other hand, it is very easy to convience
one ' s self that the linear, time invarient, predictors studied are probably very
ineffective in capitalizing on this source constraint. While formant structure

induces a strong short-term cor relation between spectrum symbols in the general
sense of correlation, only a weak or almost "accidental" correlation exists in the
specific linear sense which is relevant to linear prediction. Although the multi -
predictor schemes suggestedabove might be more effective, they still do not take

formant structures explicitly into account and hence do not represent a direct
assualt on the problem of making better use of this characteristic of speech.

Possibly a scheme can be devised whereby the formant frequencies
can be estimated explicitly and then used to determine the prediction coef-
ficients to be used. In so far as the formant frequencies themselves are
concerned, the estimation problem is surmountable; and, once estimated,
this "control" information could be handled much like the selection decisions
in multipredictor systems. That is it could either be produced by duplicate
processes at transmitter and receiver or it could be transmitted through the

channel as auxilliary information. Determination of the predictor coefficients
from these signals is of course the central problem and it appears to be a
problem of substantial magnitude at the very least. In this case, rather than

just selecting a predictor from a library, one presumably must invent a
means for generating the predictor through some computational procedure.
Since no known practical synthesis procedures are available for such a

system, exploitation of this possibility probably would require a substantial
investigation before any one approach is envisioned and an attack formulated.

It seems apparent from the limitations of methods analyzed in this

study and recent formant tracking results that substantially greater com-
pression factors could be obtained by resorting to sufficiently sophisticated

short term time-varying linear predictors. While the implementation of such I
systems is not necessarily difficult, the associated analysis and design
problems certainly are difficult. j
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